

Геофизические технологии, № 4, 2022, с. 41–53 doi: 10.18303/2619-1563-2022-4-41 **www.rjgt.ru** УДК 543.51

НОВЫЙ ПОДХОД К ИЗМЕРЕНИЮ КОМБИНИРОВАННОГО ИЗОТОПНОГО СОСТАВА МЕТАНА С ЦЕЛЬЮ ЕГО ГЕНЕТИЧЕСКОЙ ХАРАКТЕРИЗАЦИИ

А.Л. Макась, А.С. Кудрявцев, М.Л. Трошков

Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН, 630090, Новосибирск, просп. Акад. Коптюга, 3, Россия, e-mail: MakasAL @ipgg.sbras.ru

Предложен и обоснован новый подход к измерению комбинированного изотопного состава метильной группы метана ¹⁶М_{СН3}, основанный на плазмохимической конверсии в воздухе метана в метанол, и его последующем анализе на масс-спектрометре с положительной химической ионизацией при атмосферном давлении. Предложенный подход упрощает технологию генетической характеризации метана по сравнению с традиционной и позволяет в перспективе создать аппаратуру для выполнения внелабораторных анализов.

Изотопный состав метана, масс-спектрометрия с ионизацией при атмосферном давлении, генетические типы метана

THE NEW APPROACH TO DETERMINATION OF THE COMBINED ISOTOPIC COMPOSITION OF METHANE FOR ITS GENETIC CHARACTERIZATION

A.L. Makas, A.S. Kudryavtsev, M.L. Troshkov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Koptyug Ave., 3, Novosibirsk, 630090, Russia, e-mail: MakasAL@ipgg.sbras.ru

A new approach to mass-spectrometric determination of the combined isotopic composition of methane has been put forward. The approach is based on the preliminary on-line conversion of methane to methanol in corona discharge and selective chemical ionization. The approach provides means to lower requirements for equipment, consumables, and operation conditions and offers a challenge to develop a new field method.

Isotopic composition of methane, atmospheric pressure mass-spectrometry, genetic types of methane

ВВЕДЕНИЕ

Известно, что изотопные отношения углерода ¹³C/¹²C и водорода D/H в метане зависят от источника его происхождения [Schoell, 1988], поскольку в разных каналах метаногенеза превалируют разные механизмы изотопного фракционирования. В результате многочисленных исследований эмпирически установлены границы вариаций изотопных отношений, с помощью которых можно различать термогенный и бактериальный метан [Whiticar, 1999]. Например, термогенный метан, как правило, обогащен изотопом ¹³C по сравнению с бактериальным и имеет значение δ¹³C в диапазоне –50 ‰ ÷ 20 ‰. Вариации δ¹³C бактериального метана находятся в диапазоне –80 ‰ ÷ 50 ‰. Показано, что возможна и более детальная классификация по изотопному составу внутри перечисленных типов метана, например, различаются бактериальный метан, образующийся в результате восстановления CO₂, и бактериальный

© А.Л. Макась, А.С. Кудрявцев, М.Л. Трошков, 2022

метан ферментативного брожения. Тип источника происхождения (генетическая характеризация) метана в газовых проявлениях на земной поверхности, в почвенных газах и в бурильном растворе является важным геохимическим критерием нефтегазоносности при поиске залежей углеводородов. В то же время оперативность получения и объем таких данных значительно ограничены отсутствием соответствующей аппаратуры и методов для внелабораторных измерений: в настоящее время для измерения природных вариаций изотопного состава используется исключительно лабораторное масс-спектрометрическое оборудование.

Наиболее распространенный метод измерения изотопного состава углерода δ¹³С в метане основан на предварительном его сжигании в токе кислорода или воздуха и последующем массспектрометрическом изотопном анализе образовавшегося CO₂ с ионизацией электронами. При этом измеряется отношение интенсивностей ионов с m/z 45 и 44 и рассчитывается распространенность ¹³C. Основы этого метода разработаны в 50-е годы прошлого века, он широко освоен и дает в лабораторных условиях результаты необходимого качества. Однако ряд технических особенностей данного метода не позволяет реализовать его в полевых условиях.

Одним из недостатков является наличие в фоновом масс-спектре пиков ионов с m/z 44 и 45, которые снижают точность измерений. Данные пики обусловлены остаточным газом в вакуумной системе масс-спектрометра. Влияют на результаты измерений также изобарные ионы, например, N₂O⁺, C₃H₈⁺, C₂OH₅⁺, образующиеся в результате фрагментации других компонентов пробы при ионизации электронами. При анализе в лабораторных условиях минимизация влияния фоновых линий достигается путем снижения количества остаточного газа за счет применения высокопроизводительных, особо чистых вакуумных систем стационарных изотопных масс-спектрометров (рабочее давление не выше 10⁻⁶ Па), созданием стабильных климатических условий, применением особо чистого газа-носителя и реагентов. Влияние изобарных ионов, образующихся из других компонентов пробы, устраняется применением предварительного газохроматографического разделения.

Усложняется технология также и тем, что при изотопном анализе метана с концентрацией менее 0.1 % требуется концентрирование его или продукта-аналита CO₂, которое возможно реализовать только с помощью вымораживания, известного как криофокусировка, при температуре жидкого азота. Еще одним недостатком данного способа является высокая распространенность в окружающей среде двуокиси углерода, которая может загрязнять пробу и искажать результаты анализа. Все вышесказанное указывает на то, что технические решения традиционного метода, обеспечивающие необходимую точность и чувствительность изотопного анализа в лабораторных условиях, как правило, не применимы для реализации в портативных устройствах для внелабораторных измерений.

Авторами предложен новый подход [Макась и др., 2012], который лишен отмеченных выше недостатков, позволяет существенно упростить аппаратуру для изотопной характеризации метана и реализовать ее в полевом исполнении для выполнения внелабораторных анализов.

В предложенном способе продуктом-аналитом является метанол, образованный в результате плазмо-химической конверсии метана в воздухе. Изотопный анализ метанола осуществляется на массспектрометре с положительной химической ионизацией при атмосферном давлении (ХИАД) путем измерения отношения интенсивностей токов ионов с m/z 34 (¹³CH₅¹⁶O⁺, ¹²CDH₄¹⁶O⁺, ¹²CH₅¹⁷O⁺) и m/z 33 (¹²CH₅¹⁶O⁺). На основании изотопного анализа аналита рассчитывают комбинированный изотопный состав метильной группы молекулы метана, то есть относительную распространенность суммы основных изотопомеров метильной группы молекулы метана ¹³CH₃ и ¹²CDH₂. Метод ХИАД в отличие от ионизации электронами является мягким, селективным методом и характеризуется «чистым» фоновым спектром с массовыми линиями m/z 19 + *n*×18 (19, 37, 55 и т. д.), соответствующим протонированным водным кластерам.

Метанол, как продукт-аналит, обладает следующими положительными свойствами:

1) выход метанола при плазмо-химической конверсии метана при оптимальных условиях может достигать 17 % [Nozaki et al., 2004];

 относительно высокое сродство метанола к протону – 181 ккал/моль (метан – 135 ккал/моль, вода – 166 ккал/моль) и, следовательно, высокая эффективность ионизации в положительной моде ХИАД в коронном разряде [Kebarle, 2000];

при химической ионизации метанола образуется протонированная молекула [(CH₄O)H]⁺ с m/z 33.
 В окружающей среде не существует других распространенных веществ, которые бы образовывали при ХИАД ионы с m/z 33 и 34, что снимает проблему с фоновыми и изобарными ионами, которые бы снижали точность измерений;

4) метанол можно концентрировать с помощью распространенных сорбентов при нормальной температуре, не прибегая к вымораживанию [Qin et al., 1997];

5) концентрация метанола в объектах окружающей среды значительно ниже, чем углекислого газа.

Рис. 1. Функциональная схема нового метода определения комбинированного изотопного состава метана

43

В общем виде предлагаемая схема химического анализа и определения комбинированного изотопного состава метана приведена на рис. 1. При низких концентрациях метана вначале метанол, образованный в результате конверсии, концентрируют на сорбенте, затем осуществляют термодесорбцию и подачу его на изотопный анализ. Наиболее простой вариант предложенного метода реализуется при анализе проб с высокой концентрацией метана, когда не требуется его обогащение, и конверсия с ионизацией могут быть объединены в одном устройстве – источнике ионов с ХИАД с коронным разрядом. При этом в области разряда вблизи острия происходит конверсия метана в метанол и образование ионов-реактантов [(H₂O)_nH]⁺, и далее в результате ион-молекулярных реакций образуется протонированная молекула метанола.

Целью данной работы является экспериментальная проверка наиболее значимых стадий предлагаемого метода:

- 1) конверсия/ионизация метана в метанол в коронном разряде;
- 2) концентрирование метанола на твердом сорбенте при нормальных условиях и оценка коэффициента обогащения при использовании термодесорбционного устройства ввода пробы;
- 3) хроматографическое выделение метанола.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Экспериментальные исследования выполнялись на малогабаритном масс-спектрометре с ХИАД, ранее разработанном в лаборатории полевых аналитических и измерительных технологий ИНГГ СО РАН [Makas et al., 2004]. Масс-спектрометр содержит источник ионов с коронным разрядом и миниатюрный масс-анализатор монопольного типа. Для выполнения исследований по концентрированию паров метанола в воздухе и его хроматографического выделения использовалась система быстрого концентрирования/разделения, сочлененная с этим масс-спектрометром, описанная ранее авторами [Kudryavtsev et al., 2014]. В данной работе для разделения использовалась хроматографическая колонка PoraplotQ (2 м × 0.32 мм).

Для создания заданной концентрации метанола в воздухе в экспериментах использовался источник микропотока метанола ИМ36-М-А2 (ООО «Мониторинг», г. Санкт-Петербург). Порог обнаружения метанола в воздухе был определен на уровне 3.4×10⁻⁵ мг/л.

Влажность воздуха контролировалась измерителем ИВГ-1-КП с преобразователем ИПВТ-08 (ЗАО «Эксис»).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Особенности конверсии/ионизация метана в коронном разряде

В данной работе исследовали вариант реализации метода, когда конверсия и ионизация метана в метанол объединены в одном устройстве: источнике ионов с ХИАД с коронным разрядом. На вход источника ионов подавался очищенный воздух, содержащий метан и пары воды. Концентрация метана в экспериментах изменялась путем динамического разбавления.

Ранее конверсия метана в коронном разряде исследовалась в работе [Hoeben et al., 2014]. В ней установлены основные продукты конверсии: этан, этилен, ацетилен и метанол. Ионизация углеводородов в коронном разряде характеризуется крайне низкой эффективностью, однако при высокой концентрации

они проявляются в масс-спектре. Ионизация метанола в положительной моде коронного разряда при атмосферном давлении характеризуется образованием аддукт-иона (протонированной молекулы) [M+H]⁺.

При подаче метано-воздушной смеси в прибор результирующие масс-спектры характеризовались наиболее интенсивным пиком иона с m/z 33, который соответствует протонированной молекуле метанола [(CH₄O)H]+. При высокой концентрации метана регистрировался так же ион с m/z 30 [(C₂H₅)H]+.

В широком диапазоне концентраций метана зависимость интенсивности иона [(CH₄O)H]⁺ была близка к линейной, в отличие, например, от иона [(C₂H₅)H]⁺, для которого концентрационная зависимость имеет степенной характер (рис. 2).

Рис. 2. Концентрационная зависимость интенсивности ионов продуктов конверсии/ионизации метана [(CH₄O)H]⁺ и [(C₂H₅)H]⁺

Рис. 3. Зависимость интенсивности ионов продуктов конверсии/ионизации метана [(CH₄O)H]⁺ и [(C₂H₅)H]⁺ от относительной влажности

В ходе экспериментов установлена сильная зависимость эффективности конверсии/ионизации этанола от концентрации воды (рис. 3). Этот эффект указывает на необходимость предварительного хроматографического разделения воды и метанола перед подачей в источник ионов.

Для установления канала образования метанола анализируемая метано-воздушная смесь осушалась, и в нее добавлялись пары «тяжелой воды» D₂O. Это привело к тому, что массовое число m/z основного иона в масс-спектре изменился с 33 на 35, то есть увеличился на два (рис. 4). Из этого следует, что молекула метанола содержит метильную группу, образованную из исходной молекулы метана, а присоединенные атом водорода и протон образованы из воды, присутствующей в метано-воздушной смеси:

m/z, а.е.м.

Рис. 4. Масс-спектры продуктов конверсии-ионизации метано-воздушной смеси с парами H₂O (сверху) и D₂O (снизу)

Концентрирование метанола

Одним из преимуществ развиваемого подхода к определению изотопного состава метана является то, что используемый аналит – метанол, в отличие от метана и углекислого газа, можно концентрировать с помощью распространенных сорбентов при температуре окружающей среды.

При оценке объема проскока метанола через концентраторы с различными сорбентами оптимальные характеристики улавливания получены на силикагеле. При количестве сорбента 10 мг

(длина слоя 10 мм; диаметр 2 мм) происходит полное улавливание до объема прокачанной пробы 500 см³. Сорбент полностью насыщается при объеме прокачанной пробы около 5 л.

Схема экспериментальной установки для измерения коэффициента обогащения приведена на рис. 5.

Рис. 5. Схема экспериментальной установки по измерению коэффициента обогащения метанола

Атмосферный воздух, используемый для работы газовой схемы, с помощью побудителя расхода К направлялся через фильтр Ф и очищался от паров воды и органических примесей. Для создания стандартной концентрации метанола в воздухе использовался эталонный источник микропотока метанола И, установленный в термостате при заданной температуре. В экспериментах создавалась концентрация метанола в воздухе около 1.4×10⁻⁴ мг/л. Проба воздуха, содержащая пары метанола, либо подавалась в масс-спектрометр напрямую, либо отбиралась на концентратор и вводилась через систему обогащения. Измерение отклика масс-спектрометра производилось на массе 33 а.е.м., соответствующей протонированной молекуле метанола.

Коэффициент обогащения К рассчитывался как отношение интенсивностей соответствующих масс-спектрометрических пиков:

$$K = \frac{I_{o\delta}}{I_0}, \qquad (2)$$

где $I_{o\bar{o}}$ – интенсивность пика при подаче пробы через систему обогащения, I_0 – интенсивность пика при подаче пробы напрямую. Результаты измерений коэффициента обогащения метанола при различных объемах пробы приведены на рис. 6. Отклонение от линейной зависимости, наблюдаемое при объеме пробы более 500 см³, соответствует полученным данным о проскоке метанола.

Теоретически коэффициент обогащения К для данного устройства ввода выражается формулой:

$$K \approx \frac{V_{np}}{Q_{ex} \cdot \Delta t},$$
(3)

где V_{np} – объем пробы, Q_{ex} – входной поток в прибор, Δt – ширина импульса пробы после термодесорбции. В экспериментах использовалась величина потока Q_{ex} =15 см³/мин; ширина импульса Δt составляла величину около 4 с. Нетрудно убедиться, что теоретическая оценка *К* хорошо соответствует экспериментальным данным, представленным на рис. 6.

Рис. 6. Зависимость коэффициента обогащения метанола от объема пробы

Газохроматографическое выделение метанола

В экспериментах по исследованию системы обогащения использовался заранее осушенный воздух, однако при реализации метода в целом метано-воздушная смесь должна содержать пары воды, необходимые для плазмохимической конверсии метана в метанол. В то же время экспериментально установлено, что эффективность химической ионизации метанола снижается с ростом концентрации воды в пробе. Для устранения влияния воды в пробе и стандартизации условий ионизации необходимо предварительное хроматографическое разделение воды и метанола. Эффект влияния воды на эффективность ионизации метанола продемонстрирован на рис. 7А). Масс-спектрометр настраивался на регистрацию протонированного кластера воды [(H₂O)₂H]⁺ с массой 37 а.е.м. и протонированной молекулы метанола [(MeOH)H]* с массой 33 а.е.м. В источник ионов дополнительно подавалась постоянная концентрация метанола. На концентратор отбиралась проба воздуха с относительной влажностью 2.2 % объемом 150 см³. После прямого масс-спектрометрического анализа пробы с концентратора в момент выхода пика воды интенсивность сигнала от метанола на массе 33 а.е.м. существенно снижалась. Применение хроматографического разделения воды и метанола дает возможность исключить снижение сигнала от метанола, что иллюстрируется на рис. 7Б, где приведена хроматограмма, демонстрирующая разделение воды и метанола после ввода пробы воздуха с влажностью 2.2 % объемом 150 см3, содержащей метанол.

Рис. 7. А – влияние пика воды на эффективность ионизации метанола; Б – хроматограмма, демонстрирующая разделение метанола и воды

Расчет комбинированного изотопного состава

При проведении количественных расчетов изотопных характеристик углерода и водорода метильной группы и метана исходим из двух условий: 1) изотопные характеристики метильной группы в метаноле с точностью до изотопных эффектов отражают изотопные характеристики метана; 2) изотопные характеристики кислорода и водорода реагентов, участвующих в образовании метанола из метана, являются одинаковыми как в случае анализируемого метана, так и метана, используемого в качестве лабораторного стандарта, т. е. реакция проходит с постоянным изотопным эффектом для углерода и кислорода в анализируемом образце метана и стандартном образце.

Измеряя комбинированный изотопный состав протонированной молекулы метанола, т. е. отношение ³⁴М/³³М, и, учитывая влияние присоединенных в ходе конверсии атомов, можно рассчитать комбинированный изотопный состав метильной группы исходного метана ¹⁶М/¹⁵М. Комбинированный изотопный состав протонированного иона метанола ³⁴М/³³М связан с изотопным составом атомов, входящих в состав иона, следующим соотношением:

$$\frac{{}^{34}M}{{}^{33}M} = \frac{{}^{13}C}{{}^{12}C} + 3 \cdot \frac{D}{H} + \frac{{}^{17}O}{{}^{16}O} + \frac{D}{H} + \frac{D}{H},$$
(4)

что можно представить в виде суммы:

А.Л. Макась и др., Геофизические технологии, 2022, 4, 41–53

$$\frac{{}^{34}M}{{}^{33}M} = \frac{{}^{16}M}{{}^{15}M} + X,$$
(5)

где ¹⁶М/¹⁵М – комбинированный изотопный состав метильной группы молекулы метана; X – изотопный состав присоединенных атомов.

Для учета изотопного состава присоединенных атомов производят периодическую процедуру калибровки, включающую измерение калибровочного образца метана с известным комбинированным изотопным составом метильной группы молекулы метана ¹⁶М:

$$X = \left(\frac{{}^{34}M}{{}^{33}M}\right)_{C} - \left(\frac{{}^{16}M}{{}^{15}M}\right)_{C},$$
(6)

где С – индекс величины, относящийся к калибровочному образцу.

Комбинированный изотопный состав метильной группы молекулы метана ¹⁶М и его вариацию относительно стандартного образца δ¹⁶М рассчитывают по следующим формулам:

$$\left(\frac{{}^{16}M}{{}^{15}M}\right)_{A} = \left(\frac{{}^{34}M}{{}^{33}M}\right)_{A} - X, \qquad (7)$$

$$\delta^{16} \mathbf{M}_{\mathrm{A}} = \left(\frac{\binom{16}{16} M^{15} M}{\binom{16}{16} M^{15} M}_{\mathrm{R}} - 1\right) \times 1000 \%_{00}, \tag{8}$$

где A – индекс величины, относящийся к анализируемому образцу; R – индекс величины, относящийся к стандартному образцу.

При использовании в качестве эталонов изотопного отношения углерода и водорода, соответственно, PDB (Pee Dee Belemite): ¹³C/¹²C=1.1237·10⁻² и SMOW (Standard Mean Ocean Water): D/H=1.5576·10⁻⁴ комбинированный изотопный состав δ¹⁶М_{CH3} связан с изотопным составом углерода и водорода δ¹³С и δD следующей формулой:

$$\delta^{16} \mathbf{M}_{\rm CH3} = 0.960 \cdot \delta^{13} \mathbf{C} + 0.0399 \cdot \delta \mathbf{D}$$
⁽⁷⁾

На рисунке 8А приведена шкала δ^{16} Мсн₃, нанесенная на диаграмму, характеризующую генетический тип метана по изотопному составу углерода и водорода δ^{13} С и δ D, предложенную М. Витикаром [Whiticar, 1999]. На рисунках 8Б и 8В приведены диаграммы характеризации генетического типа по шкалам δ^{13} С и δ^{16} Мсн₃, полученные как соответствующие проекции из рис. 8А. Из приведенных рисунков следует, что шкала δ^{16} Мсн₃ может быть использована для характеризации источников метана так же, как традиционно используемая шкала δ^{13} С. В то же время, для классификации, предложенной М. Витикаром, шкала δ^{16} Мсн₃ лучше подходит для дифференциации термогенного метана (тип 3 на рис. 8) и бактериального метана, полученного в результате ферментативного брожения (тип 2 на рис. 8). По шкале δ^{13} С данные типы метана имеют область перекрытия вблизи значений –50 ‰, в то же время по шкале δ^{16} Мсн₃ они полностью разделяются значением –60 ‰, ввиду того, что бактериальный метан данного типа характеризуется меньшим содержанием дейтерия.

50

Рис. 8. А – диаграмма, характеризующая генетический тип метана по изотопному составу углерода и водорода δ^{13} С и δ D (Whiticar,1999), с нанесенной шкалой комбинированного изотопного состава δ^{16} M_{CH3}; Б – характеризация генетического типа метана по шкале δ^{13} С; В – характеризация генетического типа метана по шкале δ^{16} M_{CH3}.

ЗАКЛЮЧЕНИЕ

Таким образом, показано, что для изотопной характеризации метана с целью установления его генетического типа можно использовать в качестве продукта-аналита метанол, полученный в результате плазмохимической конверсии метана, а для измерения изотопных соотношений использовать массспектрометр с положительной ХИАД в коронном разряде. При этом используемая шкала комбинированного изотопного состава δ¹⁶M_{CH3} позволяет точнее дифференцировать термогенный и бактериальный метан по сравнению со шкалой δ¹³C. Предложенный подход к изотопному анализу метана существенно упрощает технологию генетической характеризации метана по сравнению с традиционной и позволяет в перспективе создать аппаратуру для выполнения внелабораторных измерений.

Экспериментально подтверждена техническая реализуемость основных стадий предлагаемого метода в малогабаритном устройстве: конверсию метана в метанол в коронном разряде; концентрирование метанола на сорбенте при нормальной температуре, не требующей вымораживания, хроматографическое разделение метанола и воды, ионизацию метанола и регистрацию характерных ионов для последующего расчета и изотопной характеризации метана.

Работа выполнена в рамках проекта Программы фундаментальных научных исследований РФ FWZZ-2022-0027 "Новые технологии внелабораторного химического анализа и контроля, прецизионных измерений физических полей природных и техногенных объектов".

ЛИТЕРАТУРА

Макась А.Л., Трошков М.Л., Кудрявцев А.С. Способ определения изотопного состава метана. Патент на изобретение 2461909, опубл. 20.09.2012.

Hoeben W.F.L.M., Boekhoven W., Beckers F.J.C.M., van Heesch E.J.M., Pemen A.J.M. Partial oxidation of methane by pulsed corona discharges // Journal of Physics D: Applied Physics. – 2014. – Vol. 47 (35). – 355202, doi: 10.1088/0022-3727/47/35/355202.

Kebarle P. Gas phase ion thermochemistry based on ion-equilibria from the ionosphere to the reactive centers of enzymes // International Journal of Mass Spectrometry. – 2000. – Vol. 200 (1–3). – P. 313–330, doi: 10.1016/S1387-3806(00)00326-2.

Kudryavtsev A.S., Makas A.L., Troshkov M.L., Grachev M.L., Pod'yachev S.P. The method for on-site determination of trace concentrations of methyl mercaptan and dimethyl sulfide in air using a mobile mass spectrometer with atmospheric pressure chemical ionization, combined with a fast enrichment/separation system // Talanta. – 2014. – Vol. 123. – P. 140–145, doi: 10.1016/j.talanta.2014.02.024.

Makas A.L., Troshkov M.L., Kudryavtsev A.S., Lunin V.M. Miniaturized mass-selective detector with atmospheric pressure chemical ionization // Journal of Chromatography B. – 2004. – Vol. 800 (1–2). – P. 63–67, doi: 10.1016/j.jchromb.2003.08.053.

Nozaki T., Hattori A., Okazaki K. Partial oxidation of methane using a microscale non-equilibrium plasma reactor // Catalysis Today. – 2004. – Vol. 98 (4). – P. 607–616, doi: 10.1016/j.cattod.2004.09.053.

Qin T., Xu X.B., Polák T., Pacákova V., Štulík K., Jech L. A simple method for the trace determination of methanol, ethanol, acetone and pentane in human breath and in the ambient air by preconcentration on solid sorbents followed by gas chromatography // Talanta. – 1997. – Vol. 44 (9). – P. 1683–1690, doi: 10.1016/S0039-9140(97)00073-8.

Schoell M. Multiple origins of methane in the Earth // Chemical Geology. – 1988. – Vol. 71 (1–3). – P. 1–10, doi: 10.1016/0009-2541(88)90101-5.

Whiticar M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane // Chemical Geology. – 1999. – Vol. 161 (1–3). – P. 291–314, doi: 10.1016/S0009-2541(99)00092-3.

REFERENCES

Hoeben W.F.L.M., Boekhoven W., Beckers F.J.C.M., van Heesch E.J.M., Pemen A.J.M. Partial oxidation of methane by pulsed corona discharges // Journal of Physics D: Applied Physics. – 2014. – Vol. 47 (35). – 355202, doi: 10.1088/0022-3727/47/35/355202.

Kebarle P. Gas phase ion thermochemistry based on ion-equilibria from the ionosphere to the reactive centers of enzymes // International Journal of Mass Spectrometry. – 2000. – Vol. 200 (1–3). – P. 313–330, doi: 10.1016/S1387-3806(00)00326-2.

Kudryavtsev A.S., Makas A.L., Troshkov M.L., Grachev M.L., Pod'yachev S.P. The method for on-site determination of trace concentrations of methyl mercaptan and dimethyl sulfide in air using a mobile mass spectrometer with atmospheric pressure chemical ionization, combined with a fast enrichment/separation system // Talanta. – 2014. – Vol. 123. – P. 140–145, doi: 10.1016/j.talanta.2014.02.024.

Makas A.L., Troshkov M.L., Kudryavtsev A.S., Lunin V.M. Miniaturized mass-selective detector with atmospheric pressure chemical ionization // Journal of Chromatography B. – 2004. – Vol. 800 (1–2). – P. 63–67, doi: 10.1016/j.jchromb.2003.08.053.

Makas A.L., Troshkov M.L., Kudryavtsev A.S. Method of determination of isotopic methane composition. Patent No. 2461909, publ. 20.09.2012.

Nozaki T., Hattori A., Okazaki K. Partial oxidation of methane using a microscale non-equilibrium plasma reactor // Catalysis Today. – 2004. – Vol. 98 (4). – P. 607–616, doi: 10.1016/j.cattod.2004.09.053.

Qin T., Xu X.B., Polák T., Pacákova V., Štulík K., Jech L. A simple method for the trace determination of methanol, ethanol, acetone and pentane in human breath and in the ambient air by preconcentration on solid sorbents followed by gas chromatography // Talanta. – 1997. – Vol. 44 (9). – P. 1683–1690, doi: 10.1016/S0039-9140(97)00073-8.

Schoell M. Multiple origins of methane in the Earth // Chemical Geology. – 1988. – Vol. 71 (1–3). – P. 1–10, doi: 10.1016/0009-2541(88)90101-5.

Whiticar M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane // Chemical Geology. – 1999. – Vol. 161 (1–3). – P. 291–314, doi: 10.1016/S0009-2541(99)00092-3.

КОРОТКО ОБ АВТОРАХ

МАКАСЬ Алексей Леонидович – кандидат технических наук, ведущий научный сотрудник лаборатории полевых аналитических и измерительных технологий Института нефтегазовой геологии и геофизики СО РАН. Основные научные интересы: разработка малогабаритной масс-спектрометрической аппаратуры для внелабораторного анализа следов органических веществ в сложных матрицах при решении задач специального химического контроля и поисковой геохимии.

КУДРЯВЦЕВ Андрей Сергеевич – научный сотрудник лаборатории полевых аналитических и измерительных технологий Института нефтегазовой геологии и геофизики СО РАН. Основные научные интересы: физика процессов образования, транспортировки и разделения ионов применительно к задачам создания малогабаритной масс-спектрометрической аппаратуры.

ТРОШКОВ Михаил Львович – ведущий инженер лаборатории полевых аналитических и измерительных технологий Института нефтегазовой геологии и геофизики СО РАН. Основные научные интересы: разработка полевой хромато-масс-спектрометрической аппаратуры для внелабораторного анализа