Adaptive training dataset generation for neural network numerical dispersion mitigation approach in seismic modeling
https://doi.org/10.18303/2619-1563-2024-1-6
Abstract
We introduce a novel method for developing the training dataset for the Numerical Dispersion Mitigation network (NDM-net), aimed at diminishing numerical inaccuracies in seismic modeling. Our strategy involves using a limited set of seismograms, produced with coarse and fine grids, to train the network. This training enables the network to transform less accurate coarse-grid data into higher-quality fine-grid data. Subsequently, the network is employed on a more extensive set of seismograms, initially computed with the coarse grid, to lower numerical errors. Creating the training dataset is the most demanding aspect of this method, requiring a balance between the number of seismograms used and maintaining training effectiveness. We propose a method to create the training dataset that maintains a specific Hausdorff distance with the complete dataset. However, this distance can vary based on the seismic-geological model used in simulations. Our work shows that an adaptive approach in setting the Hausdorff distance limit is more advantageous than a fixed limit, as it reduces the training dataset size without compromising accuracy.
About the Authors
K. А. GadylshinaRussian Federation
3, Koptyug Ave., Novosibirsk, 630090.
V. V. Lisitsa
Russian Federation
3, Koptyug Ave., Novosibirsk, 630090.
K. G. Gadylshin
Russian Federation
3, Koptyug Ave., Novosibirsk, 630090.
D. M. Vishnevsky
Russian Federation
3, Koptyug Ave., Novosibirsk, 630090.
V. I. Kostin
Russian Federation
3, Koptyug Ave., Novosibirsk, 630090.
References
1. Gadylshin K., Lisitsa V., Gadylshina K., Vishnevsky D. Optimization of the training dataset for numerical dispersion mitigation neural network // Lecture Notes in Computer Science. 2022a. Vol. 13378 LNCS. P. 295–309. doi: 10.1007/978-3-031-10562-3_22.
2. Gadylshin K., Vishnevsky D., Gadylshina K., Lisitsa V. Numerical dispersion mitigation neural network for seismic modeling // Geophysics. 2022b. Vol. 87 (3). P. T237–T249. doi: 10.1190/geo2021-0242.1.
3. Koene E.F.M., Robertsson J.O.A., Broggini F., Andersson F. Eliminating time dispersion from seismic wave modeling // Geophysical Journal International. 2017. Vol. 213 (1). P. 169–180. doi: 10.1093/gji/ggx563.
4. Levander A.R. Fourth-order finite-difference P-SV seismograms // Geophysics. 1988. Vol. 53 (11). P. 1425–1436. doi: 10.1190/1.1442422.
5. Lisitsa V., Podgornova O., Tcheverda V. On the interface error analysis for finite difference wave simulation // Computational Geosciences. 2010. Vol. 14 (4). P. 769–778. doi: 10.1007/s10596-010-9187-1.
6. Mittet R. Second-order time integration of the wave equation with dispersion correction procedures // Geophysics. 2019. Vol. 84 (4). P. T221–T235. doi: 10.1190/geo2018-0770.1.
7. Moczo P., Kristek J., Vavrycuk V., Archuleta R.J., Halada L. 3D heterogeneous staggered-grid finitedifference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities // Bulletin of the Seismological Society of America. 2002. Vol. 92 (8). P. 3042–3066. doi: 10.1785/0120010167.
8. Siahkoohi A., Louboutin M., Herrmann F.J. The importance of transfer learning in seismic modeling and imaging // Geophysics. 2019. Vol. 84 (6). P. A47–A52. doi: 10.1190/geo2019-0056.1.
9. Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method // Geophysics. 1986. Vol. 51 (4). P. 889–901. doi: 10.1190/1.1442147.
10. Virieux J., Calandra H., Plessix R.-E. A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging // Geophysical Prospecting. 2011. Vol. 59 (5). P. 794–813. doi: 10.1111/j.1365-2478.2011.00967.x.
11. Vishnevsky D., Lisitsa V., Tcheverda V., Reshetova G. Numerical study of the interface errors of finitedifference simulations of seismic waves // Geophysics. 2014. Vol. 79 (4). P. T219–T232. doi: 10.1190/geo2013-0299.1.
Review
For citations:
Gadylshina K.А., Lisitsa V.V., Gadylshin K.G., Vishnevsky D.M., Kostin V.I. Adaptive training dataset generation for neural network numerical dispersion mitigation approach in seismic modeling. Russian Journal of Geophysical Technologies. 2024;(1):6-18. (In Russ.) https://doi.org/10.18303/2619-1563-2024-1-6