Preview

Russian Journal of Geophysical Technologies

Advanced search

Using an iterative field-split solver for the quasistatic Biot equation

https://doi.org/10.18303/2619-1563-2024-1-19

Abstract

Quasistatic Biot equations in the frequency domain are applied to model low-frequency loading of the fractured porous rock sample. We approximate Biot equations by a finite-difference scheme on the staggered grid, defining different field components at different grid points. To solve the resulting system of linear algebraic equations (SLAE) with more than 106 unknown values, we use an iterative method (Biconjugate gradient stabilized method, BCGStab) with a preconditioner based on field-split approach to divide equations into two groups. The first group describes solid deformation, and the second group describes fluid transport. Numerical experiments demonstrate fast convergence of the iterative process for applied method and its advantages in the case of large computational grid in comparison with direct method.

About the Authors

S. А. Solovyev
Sobolev Institute of Mathematics SB RAS
Russian Federation

4, Koptyug Ave., Novosibirsk, 630090.



V. I. Kostin
Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS
Russian Federation

3, Koptyug Ave., Novosibirsk, 630090.



V. V. Lisitsa
Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS
Russian Federation

3, Koptyug Ave., Novosibirsk, 630090.



M. A. Novikov
Sobolev Institute of Mathematics SB RAS
Russian Federation

4, Koptyug Ave., Novosibirsk, 630090.



References

1. Alekseev A.S., Mikhailenko B.G. The solution of dynamic problems of elastic wave propagation in inhomogeneous media by a combination of partial separation of variables and finite-difference methods // Journal of Geophysics. 1980. Vol. 48 (1). P. 161–172.

2. Amestoy P.R., Duff I.S., L’Excellent J.-Y., Koster J. A fully asynchronous multifrontal solver using distributed dynamic scheduling // SIAM Journal on Matrix Analysis and Applications. 2001. Vol. 23 (1). P. 15–41. doi: 10.1137/S089547989935819.

3. Biot M.A. Theory of propagation of elastic waves in fluid-saturated porous solid. I. Low-frequency range // Journal of the Acoustical Society of America. 1956a. Vol. 28 (2). P. 168–178. doi: 10.1121/1.1908239.

4. Biot M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range // Journal of the Acoustical Society of America. 1956b. Vol. 28 (2). P. 179–191. doi: 10.1121/1.1908241.

5. Bollhöfer M., Schenk O., Janalik R., Hamm S., Gullapalli K. State-of-the-art sparse direct solvers // Grama A., Sameh A. (Eds.) Parallel Algorithms in Computational Science and Engineering. Modeling and Simulation in Science, Engineering and Technology. Baser: Birkhäuser Cham, 2020. P. 3–33. doi: 10.48550/arXiv.1907.05309.

6. Calandrini S., Aulisa E., Ke G. A field-split preconditioning technique for fluid-structure interaction problems with applications in biomechanics // International Journal for Numerical Methods in Biomedical Engineering. 2020. Vol. 36 (3). P. e3301. doi: 10.1002/cnm.3301.

7. Masson Y.J., Pride S.R., Nihei K.T. Finite difference modeling of Biot's poroelastic equations at seismic frequencies // Journal of Geophysical Research: Solid Earth. 2006. Vol. 111 (B10305). P. 1–13. doi: 10.1029/2006JB004366.

8. Novikov M.A., Lisitsa V.V., Kozyaev A.A. Numerical modeling of wave processes in fractured porous fluidsaturated media // Numerical Methods and Programming. 2018. Vol. 19 (2). P. 130–149.

9. Novikov M.A., Lisitsa V.V., Bazaikin Ya.V. Wave propagation in fractured-porous media with different percolation length of fracture systems // Lobachevskii Journal of Mathematics. 2020. Vol. 41 (8). P. 1533–1544. doi: 10.1134/S1995080220080144.

10. Novikov M., Lisitsa V., Khachkova T., Reshetova D., Vishnevsky D. Numerical algorithm of seismic wave propagation and seismic attenuation estimation in anisotropic fractured porous fluid-saturated media // 21st International Conference on Computational Science and Its Applications, ICCSA 2021. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2021. Vol. 12949 LNCS. P. 434–448. doi: 10.1007/978-3-030-86653-2_32.

11. Li X.S. An overview of SuperLU: Algorithms, implementation, and user interface // ACM Transactions on Mathematical Software. 2005. Vol. 31 (3). P. 302–325. doi: 10.1145/1089014.1089017.

12. Quintal B., Steeb H., Frehner M., Schmalholz S.M. Quasi-static finite element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media // Journal of Geophysical Research. 2011. Vol. 116 (B1). P. 1–17. doi: 10.1029/2010JB007475.

13. Reshetova G., Romenski E. Diffuse interface approach to modeling wavefields in a saturated porous medium // Applied Mathematics and Computation. 2021. Vol. 398. P. 12598. doi:10.1016/j.amc.2021.125978.

14. Saad Y. Iterative Methods for Sparse Linear Systems. New York: PWS Publishing, 1996. 447 p.

15. Solovyev S., Novikov V., Lisitsa V. Numerical solution of anisotropic Biot equations in quasi-static state // 22nd International Conference on Computational Science and Its Applications, ICCSA 2022. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2022. Vol. 13378 LNCS. P. 310–327. doi: 10.1007/978-3-031-10562-3_23.

16. Solovyev S.A., Novikov M.A., Lisitsa V.V. Numerical solution of anisotropic Biot equations of poroelastic fluidsaturated media in quasi-static state for numerical upscaling // Numerical Methods and Programming. 2023. Vol. 24 (1). P. 67–88. doi: 10.26089/NumMet.v24r106.

17. Stuben K. A review of algebraic multigrid // Journal of Computational and Applied Mathematics. 2001. Vol. 128 (1–2). P. 281–309. doi: 10.1016/S0377-0427(00)00516-1.


Review

For citations:


Solovyev S.А., Kostin V.I., Lisitsa V.V., Novikov M.A. Using an iterative field-split solver for the quasistatic Biot equation. Russian Journal of Geophysical Technologies. 2024;(1):19-28. (In Russ.) https://doi.org/10.18303/2619-1563-2024-1-19

Views: 146


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)