Numerical simulation of wave propagation in blocky-layered medium with thin elastic and viscoelastic interlayers
https://doi.org/10.18303/2619-1563-2024-1-47
Abstract
A mathematical model of a blocky-layered medium with thin layers is considered. This model describes elastic deformations of both blocks and interlayers. The viscoelastic properties of the interlayer materials are taken into account in order to describe wave attenuation. Wave fields excited in a blocky medium are investigated. The results of numerical simulation are compared with experimental data.
About the Authors
E. A. EfimovRussian Federation
50/44, Akademgorodok, Krasnoyarsk, 660036.
V. M. Sadovskii
Russian Federation
50/44, Akademgorodok, Krasnoyarsk, 660036.
References
1. Aleksandrova N.I. The plane Lamb problem for a 2D discrete medium // Doklady Physics. 2015. Vol. 60. P. 5–10. doi:10.1134/S1028335815010012.
2. Aleksandrova N.I., Sher E.N. Wave propagation in the 2D periodical model of a block-structured medium. Part I: Characteristics of waves under impulsive impact // Journal of Mining Science. 2010. Vol. 46. P. 639–649. doi: 10.1007/s10913-010-0081-y.
3. Blanch J.O., Robertsson J.O.A., Symes W.W. Modeling of a constant Q; methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique // Geophysics. 1995. Vol. 60. P. 176–184. doi: 10.1190/1.1443744.
4. Ivanov G.V., Volchkov Yu. M., Bogulskii I.O., Anisimov S.A., Kurguzov V.D. Numerical Solution of Dynamic Elastic-Plastic Problems of Deformable Solids [in Russian]. Sib. Univ. Izd. Novosibirsk, 2002. 352 p.
5. Kulikovskii A.G., Pogorelov N.V., Semenov A.Yu. Mathematical aspects of numerical solution of hyperbolic systems [in Russian]. Fizmatlit, Moscow, 2001. 601 p.
6. Marchuk G.I. Splitting methods [in Russian]. Nauka, Moscow, 1988. 263 p.
7. Sadovskii M.A. Natural lumpiness of a rock // Doklady Academii Nauk SSSR. 1979. Vol. 247 (4). P. 829–831.
8. Sadovskii M.A., Sardarov S.S. Coordination and similarity of the geomotions in connection with natural jointing of rocks // Doklady Academii Nauk SSSR. 1980. Vol. 250 (4). P. 846–848.
9. Sadovskii V.M., Sadovskaya O.V. Modeling of elastic waves in a blocky medium based on equations of the Cosserat continuum // Wave Motion. 2015. Vol. 52. P. 138–150. doi: 10.1016/j.wavemoti.2014.09.008.
10. Sadovskii V.M., Sadovskaya O.V. Numerical algorithm based on implicit finite-difference schemes for analysis of dynamic processes in blocky media // Russian Journal of Numerical Analysis and Mathematical Modelling. 2018. Vol. 33 (2). P. 111–121. doi: 10.1515/rnam-2018-0010.
11. Sadovskii V.M., Sadovskaya O.V., Pokhabova M.A. Modeling of elastic waves in a block medium based on equations of the Cosserat continuum // Computational Continuum Mechanics. 2014. Vol. 7. P. 52–60.
12. Saraikin V.A., Chernikov A.G., Sher E.N. Wave propagation in two-dimensional block media with viscoelastic layers (theory and experiment) // Journal of Applied Mechanics and Technical Physics. 2015. Vol. 56 (4). P. 688–697. doi: 10.1134/S0021894415040161.
Review
For citations:
Efimov E.A., Sadovskii V.M. Numerical simulation of wave propagation in blocky-layered medium with thin elastic and viscoelastic interlayers. Russian Journal of Geophysical Technologies. 2024;(1):47-59. (In Russ.) https://doi.org/10.18303/2619-1563-2024-1-47