Preview

Russian Journal of Geophysical Technologies

Advanced search

Numerical simulation of twophase flows on the base of phase-field method

https://doi.org/10.18303/2619-1563-2024-1-60

Abstract

We present a numerical approach to simulate the two-phase flows. The approach is based on the phase-field method where the phase is defined by the concentration function. This function smoothly varied from zero to one to distinguish between the phases. However, the phase interface is substituted by a thin enough layer where the phases are artificially mixed. Such representation of the phases simplifies evaluation of the interfacial tension and approximation of the wetting angles when the finite differences are used to approximate the problem. We verified the approach over a series of tests.

About the Authors

T. S. Khachkova
Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS
Russian Federation

3, Koptyug Ave., Novosibirsk, 630090.



E. A. Gondul
Sobolev Institute of Mathematics SB RAS
Russian Federation

4, Koptyug Ave., Novosibirsk, 630090.



V. V. Lisitsa
Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS
Russian Federation

3, Koptyug Ave., Novosibirsk, 630090.



D. I. Prokhorov
Sobolev Institute of Mathematics SB RAS
Russian Federation

4, Koptyug Ave., Novosibirsk, 630090.



V. I. Kostin
Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS
Russian Federation

3, Koptyug Ave., Novosibirsk, 630090.



References

1. Andra H., Combaret N., Dvorkin J., Glatt E., Han J., Kabel M., Keehm Y., Krzikalla F., Lee M., Madonna C., Marsh M., Mukerji T., Saenger E.H., Sain R., Saxena N., Ricker S., Wiegmann A., Zhan X. Digital rock physics benchmarks—Part I: Imaging and segmentation // Computers & Geosciences. 2013a. Vol. 50. P. 25–32. doi: 10.1016/j.cageo.2012.09.005.

2. Andra H., Combaret N., Dvorkin J., Glatt E., Han J., Kabel M., Keehm Y., Krzikalla F., Lee M., Madonna C., Marsh M., Mukerji T., Saenger E.H., Sain R., Saxena N., Ricker S., Wiegmann A., Zhan X. Digital rock physics benchmarks—part II: Computing effective properties // Computers & Geosciences. 2013b. Vol. 50. P. 33–43. doi: 10.1016/j.cageo.2012.09.008.

3. Bahbah C., Khalloufi M., Larcher A., Mesri Y., Coupez T., Valette R., Hachem E. Conservative and adaptive level-set method for the simulation of two-fluid flows // Computers & Fluids. 2019. Vol. 191. Article 104223. doi: 10.1016/j.compfluid.2019.06.022.

4. Bazaikin Ya.V., Kolyukhin D.R., Lisitsa V.V., Novikov M.A., Reshetova G.V., Khachkova T.S. Effect of CT- image scale on macro-scale properties estimation // Seismic Technologies. 2016. Vol. 2. P. 38–47. doi: 10.18303/1813-4254-2016-2-38-47.

5. Chiu P.H., Lin Y.T. A conservative phase field method for solving incompressible two-phase flows // Journal of Computational Physics. 2011. Vol. 230 (1). P. 185–204. doi: 10.1016/j.jcp.2010.09.021.

6. Croce R., Griebel M., Schweitzer M.A. A parallel level-set approach for two-phase flow problems with surface tension in three space dimensions. 2004. https://webdoc.sub.gwdg.de/ebook/serien/e/sfb611/157.pdf.

7. Gibou F., Fedkiw R., Osher S. A review of level-set methods and some recent applications // Journal of Computational Physics. 2018. Vol. 353. P. 82–109. doi: 10.1016/j.jcp.2017.10.006.

8. Groot R.D. Second order front tracking algorithm for Stefan problem on a regular grid // Journal of Computational Physics. 2018. Vol. 372. P. 956–971. doi: 10.1016/j.jcp.2018.04.051.

9. Jacqmin D. Calculation of two-phase Navier–Stokes flows using phase-field modeling // Journal of computational physics. 1999. Vol. 155 (1). P. 96–127. doi: 10.1006/jcph.1999.6332.

10. Jettestuen E., Friis H.A., Helland J.O. A locally conservative multiphase level set method for capillary-controlled displacements in porous media // Journal of Computational Physics. 2021. Vol. 428. Article 109965. doi: 10.1016/j.jcp.2020.109965

11. Khachkova T., Lisitsa V., Reshetova G., Tcheverda V. Numerical estimation of electrical resistivity in digital rocks using GPUs // Computational Methods and Programming. 2020. Vol. 21 (3). P. 306–318.

12. Khachkova T., Lisitsa V., Sotnikov O., Islamov I., Ganiev D. A new technique for numerical estimation of the absolute permeability of rocks from their microtomographic images // Journal of Geophysics. 2023. Vol. 1. P. 34–40.

13. Kim J. Phase-field models for multi-component fluid flows // Communications in Computational Physics. 2012. Vol. 12 (3). P. 613–661. doi: 10.4208/cicp.301110.040811a.

14. Lepilliez M., Popescu E.R., Gibou F. Tanguy S. On two-phase flow solvers in irregular domains with contact line // Journal of Computational Physics. 2016. Vol. 321. P. 1217–1251. doi: 10.1016/j.jcp.2016.06.013.

15. Liu X.D., Osher S., Chan T. Weighted essentially non-oscillatory schemes // Journal of Computational Physics. 1994. Vol. 115 (1). P. 200–212. doi: 10.1006/jcph.1994.1187.

16. Zhao J., Han D. Second-order decoupled energy-stable schemes for Cahn–Hilliard–Navier–Stokes equations // Journal of Computational Physics. 2021. Vol. 443. Article 110536. doi: 10.1016/j.jcp.2021.110536.


Review

For citations:


Khachkova T.S., Gondul E.A., Lisitsa V.V., Prokhorov D.I., Kostin V.I. Numerical simulation of twophase flows on the base of phase-field method. Russian Journal of Geophysical Technologies. 2024;(1):60-71. (In Russ.) https://doi.org/10.18303/2619-1563-2024-1-60

Views: 152


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)