Multiscale geomechanical modeling taking into account the evolution of the microstructure of the geological media
https://doi.org/10.18303/2619-1563-2024-1-105
Abstract
The general concept of a multiscale modeling approach for solving geomechanics problems is presented. It is based on the solution of a system of poroelastoplasticity equations taking into account changes in macroparameters during the development of deformation as a result of the evolution of the internal structure of the geomedium under the influence of load. Macroparameters are refined by modeling the deformation of selected smaller-scale areas. A feature of the presented approach is the absence of a fixed mesovolume to clarify the parameters. This mesovolume is determined depending on the stress-strain state of the macroscopic region.
Keywords
About the Authors
A. V. VershininRussian Federation
1, Leninskie Gory, Moscow, 119992;
10, bld. 1, B. Gruzinskaya Str., Moscow, 123242.
K. M. Zingerman
Russian Federation
1, Leninskie Gory, Moscow, 119992;
33, Zhelyabov Str., Tver, 170100.
V. A. Levin
Russian Federation
1, Leninskie Gory, Moscow, 119992.
Yu. P. Stefanov
Russian Federation
3,Koptyug Ave., Novosibirsk, 630090.
M. Ya. Yakovlev
Russian Federation
1, Leninskie Gory, Moscow, 119992.
References
1. Bøe Ø. Analysis of an upscaling method based on conservation of dissipation // Transport in Porous Media. 1994. Vol. 17. P. 77–86. doi: 10.1007/BF00624051.
2. Burgarelli D., Kischinhevsky M., Biezuner R.J. A new adaptive mesh refinement strategy for numerically solving evolutionary PDE’s // Journal of Computational and Applied Mathematics. 2006. Vol. 196. P. 115–131. doi: 10.1016/j.cam.2005.08.013.
3. Durlofsky L.J. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media // Water Resources Research. 1991. Vol. 27. P. 699–708. doi: 10.1029/91WR00107.
4. Durlofsky L.J. Upscaling and gridding of fine scale geological models for flow simulation // 8th International Forum on Reservoir Simulation. Stresa, Italy, 2005. P. 1–59.
5. Farmer C.L. Upscaling: a review // International Journal for Numerical Methods in Fluids. 2002. Vol. 40 (1–2). P. 63–78. doi: 10.1002/fld.267.
6. Freret L., Ivan L., De Sterck H., Groth C.P.T. High-order finite-volume method with block-based AMR for magnetohydrodynamics flows // Journal of Scientific Computing. 2019. Vol. 79. P. 176–208. doi: 10.1007/s10915-018-0844-1.
7. Grandin M. Data structures and algorithms for high-dimensional structured adaptive mesh refinement // Advances in Engineering Software. 2015. Vol. 82. P. 75–86. doi: 10.1016/j.advengsoft.2014.12.001.
8. Hasbestan J.J., Senocak I. Binarized-octree generation for Cartesian adaptive mesh refinement around immersed geometries // Journal of Computational Physics. 2018. Vol. 368. P. 179–195. doi: 10.1016/j.jcp.2018.04.039.
9. Ji H., Lien F.-S., Yee E. A new adaptive mesh refinement data structure with an application to detonation // Journal of Computational Physics. 2010. Vol. 229. P. 8981–8993. doi: 10.1016/j.jcp.2010.08.023.
10. Levin V.A., Zingerman K.M., Vershinin A.V., Yakovlev M.Ya. Numerical analysis of effective mechanical properties of rubber-cord composites under finite strains // Composite Structures. 2015. Vol. 131. P. 25–36. doi: 10.1016/j.compstruct.2015.04.037.
11. Miftakhov R.F., Myasnikov A.V., Vershinin A.V., Chugunov S.S., Zingerman K.M. On a hydro-geomechanical modelling of shale formations // Seismic Technologies. 2015. Vol. 4. P. 97–108.
12. Pergament A.K., Semiletov V.A., Zaslavsky M.Y. Multiscale averaging algorithms for flow modeling in heterogeneous reservoir // Proceedings of 10th European Conference on the Mathematics of Oil Recovery. 2006. P014. doi: 10.3997/2214-4609.201402549.
13. Pickup G.E., Ringrose P.S., Jensen J.L., Sorbie K.S. Permeability tensors for sedimentary structures // Mathematical Geology. 1994. Vol. 26 (2). P. 227–250. doi: 10.1007/BF02082765.
14. Renard Ph., de Marsily G. Calculating equivalent permeability: a review // Advances in Water Resources. 1997. Vol. 20 (5–6). P. 253–278. doi: 10.1016/S0309-1708(96)00050-4.
15. Vershinin A.V., Levin V.A., Zingerman K.M., Sboychakov A.M., Yakovlev M.Ya. Software for estimation of second order effective material properties of porous samples with geometrical and physical nonlinearity accounted for // Advances in Engineering Software. 2015. Vol. 86. P. 80–84. doi: 10.1016/j.advengsoft.2015.04.007.
16. Yakovlev M., Konovalov D. Multiscale geomechanical modeling under finite strains using finite element method // Continuum Mechanics and Thermodynamics. 2022. Vol. 35 (4). P. 1223–1234. doi: 10.1007/s00161-022-01107-6.
17. Yakovlev M.Ya., Semykin A.A., Levin V.A. Method and some results of numerical estimation of effective Biot’s coefficient of rocks // Chebyshevskii Sbornik. 2022. Vol. 23 (4). P. 382–393. doi: 10.22405/2226-8383-2022-23-4-382-393.
18. Zhang J., Chi B., Singh K.M., Zhong Y., Ju C. A binary-tree element subdivision method for evaluation of singular domain integrals with continuous or discontinuous kernel // Engineering Analysis with Boundary Elements. 2020. Vol. 116. P. 14–30. doi: 10.1016/j.enganabound.2020.03.023.
Review
For citations:
Vershinin A.V., Zingerman K.M., Levin V.A., Stefanov Yu.P., Yakovlev M.Ya. Multiscale geomechanical modeling taking into account the evolution of the microstructure of the geological media. Russian Journal of Geophysical Technologies. 2024;(1):105-117. (In Russ.) https://doi.org/10.18303/2619-1563-2024-1-105