Preview

Russian Journal of Geophysical Technologies

Advanced search

On the possibility of increasing the signal-to-noise ratio by using the harmonics in non-explosive seismic exploration

https://doi.org/10.18303/2619-1563-2024-4-34

Abstract

In the Vibroseis method, along with the main sweep signal, its harmonics, which are usually considered as noise, travel into the Earth's crust. The natural information that can be extracted from the harmonics is the high-frequency component that is absent in the signal. However, even within the frequency range of the main sweep, it is possible to utilize the energy of the harmonics to improve the signal-to-noise ratio. It is shown that the conventional signature deterministic deconvolution loses the energy of the harmonics. At the same time, the optimal statistical focusing filter that accounts for the additive noise factor, successfully utilizes the energy of the harmonics.

About the Author

M. S. Denisov
GEOLAB Ltd
Russian Federation

Mikhail S. Denisov

Ordzhonikidze Str., 12/4, Moscow, 119071



References

1. Akhondi-Asl H., Vermeer P.L. Vibrator harmonics-noise or signal? // 77th EAGE Annual Conference and Exhibition. Expanded Abstracts. 2015. P. 1–5. doi:10.3997/2214-4609.201413436.

2. Alnasser H., Shaiban A., El Yadari N., Almarzooq M. Fundamentals and higher order harmonics separation and integration from vertical seismic profiling (VSP) data // 82nd EAGE Annual Conference and Exhibition. Expanded Abstracts. 2021. P. 1–5. doi:10.3997/2214-4609.202113038.

3. Boganik G.N., Gurvich I.I. Seismic exploration (In Russ.). AIS, Tver, 2006. 744 p.

4. Caporal M., Tsingas C., Almubarak M.S., Alnasser H. Automated, inversion-based fundamental and higher order harmonics separation // 83rd EAGE Annual Conference and Exhibition. Expanded Abstracts. 2022. P. 1–5. doi:10.3997/2214-4609.202210032.

5. Denisov M.S. Signature deconvolution for composite signals // Russian Journal of Geophysical Technologies. 2024. No. 3. P. 21–32. (In Russ.). doi:10.18303/2619-1563-2024-3-21.

6. Denisov M.S., Egorov A.A. Constructing a model of Vibroseis signal complicated by harmonics // Russian Journal of Geophysical Technologies. 2019a. No. 1. P. 71–82. (In Russ.). doi:10.18303/2619-1563-2019-1-72.

7. Denisov M.S., Egorov A.A. Optimization-based recursive filtering for Vibroseis harmonic noise elimination // Russian Journal of Geophysical Technologies. 2019b. No. 2. P. 25–53. (In Russ.). doi:10.18303/2619-1563-2019-2-23.

8. Denisov M.S., Egorov A.A., Shneerson M.B. Optimization-based recursive filtering for separation of signal from harmonics in Vibroseis // Geophysical Prospecting. 2021. Vol. 69 (4). P. 779–798. doi:10.1111/1365-2478.13084.

9. Denisov M.S., Zykov A.A. Modeling of harmonics of amplitude and nonlinear frequency-modulated signals // Russian Journal of Geophysical Technologies. 2023a. No. 3. P. 58–68. (In Russ.). doi:10.18303/2619-1563-2023-3-58.

10. Denisov M.S., Zykov A.A. Separation of signal and harmonics in non-explosive seismic prospecting with amplitude and nonlinear frequency-modulated signals // Russian Journal of Geophysical Technologies. 2023b. No. 3. P. 69–84. (In Russ.). doi:10.18303/2619-1563-2023-3-69.

11. Gonorovsky I.S. Radio engineering circuits and signals (In Russ.). Radio and Сommunication, Moscow, 1986. 512 p.

12. Hatton L., Worthington M., Makin J. Seismic data processing. Theory and practice (In Russ.). Mir, Moscow, 1989. 216 p.

13. Korn G., Korn T. Mathematics handbook (In Russ.). Nauka, Moscow, 1974. 832 p.

14. Kozlov E.A., Gogonenkov G.N., Lerner B.L., Mushin I.A., Meshbey V.I., Klimovich N.I., Yankovkij I.I. Digital processing of seismic data (In Russ.). Nedra, Moscow, 1973. 309 p.

15. Liu D., Li X., Wang W., Wang X., Shi Z., Chen W. Eliminating harmonic noise in vibrator data through sparsity-promoted waveform modeling // Geophysics. 2022. Vol. 87 (3). P. V183–V191. doi:10.1190/geo2021-0448.1.

16. Nikitin A.A. Theoretical fundamentals of geophysical information processing (In Russ.). Nedra, Moscow, 1986. 342 p.

17. Oppenheim A., Schafer R. Digital signal processing (In Russ.). Technosphera, Moscow, 2012. 1048 p.

18. Rapoport M.B. Computing technologies in field geophysics (In Russ.). Moscow, Nedra, 1993. 352 p.

19. Rozemond H.J. Slip-sweep acquisition // 66th SEG Annual Meeting and Exposition. Expanded Abstracts. 1996. P. 64–67. doi:10.1190/1.1826730.

20. Vedernikov G.V., Maksimov L.A., Zharkov A.V. Study of harmonics of the Vibroseis signals // Geofizika. Special Issue to 30th Anniversary of Sibneftegeofizika. 2001. P. 33–38. (In Russ.)

21. Wang T., JafarGandomi A., Aune H. Extending seismic bandwidth using the harmonic energy of a marine vibrator source // 3rd International Meeting for Applied Geoscience and Energy, Expanded Abstracts. SEG, 2023. P. 177–181. doi:10.1190/image2023-3909863.1.

22. Yagudin I.R., Gafarov R.M., Zhuzhel A.S. Nonlinear distortions as an additional source of seismic information in vibration seismic exploration // Geomodel 2024: 26th Scientific and Practical Conference on Geological Exploration and Development of Oil and Gas Deposits. Expanded Abstracts. Gemodel Razvitie, Moscow, 2024. P. 110–113. (In Russ.)

23. Yilmaz Ö. Seismic data analysis. SEG, Tulsa, 2001. Vol. 1. 1809 p.


Review

For citations:


Denisov M.S. On the possibility of increasing the signal-to-noise ratio by using the harmonics in non-explosive seismic exploration. Russian Journal of Geophysical Technologies. 2024;(4):34-49. (In Russ.) https://doi.org/10.18303/2619-1563-2024-4-34

Views: 117


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)