Machine learning methods in seismic facies analysis problems
https://doi.org/10.18303/2619-1563-2024-4-50
Abstract
The principles of machine learning and its use in solving seismic facies analysis problems are considered. The issues of the efficiency of the obtained solutions at a qualitative level, as well as significant aspects influencing their efficiency are discussed. The latter include: data quality, groups of attributes used, features of clustering algorithms. As an example, the results obtained for horizons related to the Bobrikovian–Tournasian strata of the Lower Carboniferous age in the southwestern part of the Orenburg region are given.
Keywords
About the Authors
E. I. KorytkinRussian Federation
Evgeny I. Korytkin
Koptyug Ave., 3, Novosibirsk, 630090
Amurskaya Str., 53, Yuzhno-Sakhalinsk, 693009
G. M. Mitrofanov
Russian Federation
Georgy M. Mitrofanov
Koptyug Ave., 3, Novosibirsk, 630090
Pirogova Str., 1, Novosibirsk, 630090
K. Marks Ave., 20, Novosibirsk, 630073
A. M. Kamashev
Russian Federation
Aleksandr M. Kamashev
Koptyug Ave., 3, Novosibirsk, 630090
Pirogova Str., 1, Novosibirsk, 630090
References
1. Alekseev A.S., Pyatkin V.P., Dementiev V.N., Alsynbaev K.S., Angelsky A.N., Bolychevsky A.B., Gilev B.A., Gorbunov B.A., Zabelin V.A., Zyat’kova L.K., Kireitov V.P., Klimenko A.D., Kondaurov M.I., Kopylov A.I., G.I. Kuzin, Ladyzhets V.S., Nifontov V.P., Osipov N.A., Raigel’ V.I., Repkov V.V., Selivanov A.N., Spektor A.A., Stakheev A.V., Yudin A.N. Automated image processing of natural complexes of Siberia (In Russ.). Nauka, Novosibirsk, 1988. 222 p.
2. Chaban L.N. Theory and algorithms of pattern recognition: a tutorial (In Russ.). MIIGAIK, Moscow, 2004. 290 p.
3. Chopra S., Marfurt K.J. Unsupervised machine learning applications for seismic facies classification // Proceeding of the 7th Unconventional Resources Technology Conference. Denver, 2019. Paper URTEC-2019-557-MS. doi:10.15530/urtec-2019-557.
4. Coleou T., Poupon M., Azbel K. Unsupervised seismic facies classification: A review and comparison of techniques and implementation // The Leading Edge. 2003. Vol. 22 (10). P. 942–953. doi:10.1190/1.1623635.
5. Durand B., Odel P. Cluster analysis (In Russ.). Moscow, 1977. 128 p.
6. Friedman N., Geiger D., Goldszmidt M. Bayesian network classifiers // Machine Learning. 1997. Vol. 29 (2–3). P. 131–163. doi:10.1023/A:1007465528199.
7. Khachumov M.V. Distances, metrics and cluster analysis // Scientific and Technical Information Processing. 2012. Vol. 39 (6). P. 310–316. doi:10.3103/S0147688212060020.
8. Kohonen T. Self-organized formation of topologically correct feature maps // Biological Cybernetics. 1982. Vol. 43. P. 59–69. doi:10.1007/BF00337288.
9. MacQueen J. Some methods for classification and analysis of multivariate observations // Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California, Los Angeles LA USA, 1967. P. 281–297.
10. Mitrofanov G.M., Kovalenko I.A., Korytkin E.I. Application of seismic facies analysis using attributes for reservoir prediction // Russian Journal of Geophysical Technologies. 2024. No. 3. P. 33–45. (In Russ.). doi:10.18303/2619-1563-2024-3-33
11. Myasnikov V.V. Pattern recognition and machine learning. Basic approaches: a tutorial (In Russ.). Samara: Samara University Publishing House, 2023. 196p.
12. Nilson N. Learning machines (In Russ.). Mir, Moscow, 1967. 180 p.
13. Owusu B.A., Boateng C.D., Asare V.S., Danuor S.K., Adenutsi C.D., Quaye J.A. Seismic facies analysis using machine learning techniques: a review and case study // Earth Science Informatics. 2024. Vol. 17. P. 3899–3924. doi:10.1007/s12145-024-01395-3.
14. Priezzhev I.I., Solokha E.V., Manral S. Facies analysis based on 3D seismic waveform (In Russ.) // Geofizika. 2014. No. 1. P. 63–67.
15. Rijks E.J.H., Jauffred J.C.E.M. Attribute extraction: an important application in any detailed 3-D interpretation study // The Leading Edge. 1991. Vol. 10 (9). P. 11–19. doi:10.1190/1.1436837.
16. Tu J., Gonzalez R. Principles of pattern recognition (In Russ.). Mir, Moscow, 1978. 411p.
17. Vapnik V.N. Restoration of dependencies based on empirical data (In Russ.). Nauka, Moscow, 1979. 448 p.
18. Verma S., Roy A., Perez R., Marfurt K.J. Mapping high frackability and high TOC zones in the Barnett Shale: Supervised Probabilistic Neural Network vs. unsupervised multi-attribute Kohonen SOM // SEG Technical Program Expanded Abstracts. 2012. P. 1–5. doi:10.1190/segam2012-1494.1.
19. Voronina V.V., Mikheev A.V., Yarushkina N.G., Svyatov K.V. Theory and practice of machine learning: a tutorial (In Russ.). UlSTU, Ulyanovsk, 2017. 70 p.
20. Vyugin V.V. Mathematical foundations of the theory of machine learning and forecasting (In Russ.). Moscow, 2013. 387 p.
21. Wickramasinghe I., Kalutarage H. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation // Soft Computing. 2021. Vol. 25 (3). P. 2277–2293. doi:10.1007/s00500-020-05297-6.
22. Zhao T., Jayaram V., Roy A., Marfurt K.J. A comparison of classification techniques for seismic facies recognition // Interpretation. 2015. Vol. 3 (4). P. SAE29–SAE58. doi:10.1190/INT-2015-0044.1.
Review
For citations:
Korytkin E.I., Mitrofanov G.M., Kamashev A.M. Machine learning methods in seismic facies analysis problems. Russian Journal of Geophysical Technologies. 2024;(4):50-63. (In Russ.) https://doi.org/10.18303/2619-1563-2024-4-50