Preview

Russian Journal of Geophysical Technologies

Advanced search

Machine learning methods in seismic facies analysis problems

https://doi.org/10.18303/2619-1563-2024-4-50

Abstract

The principles of machine learning and its use in solving seismic facies analysis problems are considered. The issues of the efficiency of the obtained solutions at a qualitative level, as well as significant aspects influencing their efficiency are discussed. The latter include: data quality, groups of attributes used, features of clustering algorithms. As an example, the results obtained for horizons related to the Bobrikovian–Tournasian strata of the Lower Carboniferous age in the southwestern part of the Orenburg region are given.

About the Authors

E. I. Korytkin
Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS; SakhalinNIPI Oil and Gas Ltd
Russian Federation

Evgeny I. Korytkin

Koptyug Ave., 3, Novosibirsk, 630090

Amurskaya Str., 53, Yuzhno-Sakhalinsk, 693009



G. M. Mitrofanov
Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS; Novosibirsk State University; Novosibirsk State Technical University
Russian Federation

Georgy M. Mitrofanov

Koptyug Ave., 3, Novosibirsk, 630090

Pirogova Str., 1, Novosibirsk, 630090

K. Marks Ave., 20, Novosibirsk, 630073



A. M. Kamashev
Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS; Novosibirsk State University
Russian Federation

Aleksandr M. Kamashev

Koptyug Ave., 3, Novosibirsk, 630090

Pirogova Str., 1, Novosibirsk, 630090



References

1. Alekseev A.S., Pyatkin V.P., Dementiev V.N., Alsynbaev K.S., Angelsky A.N., Bolychevsky A.B., Gilev B.A., Gorbunov B.A., Zabelin V.A., Zyat’kova L.K., Kireitov V.P., Klimenko A.D., Kondaurov M.I., Kopylov A.I., G.I. Kuzin, Ladyzhets V.S., Nifontov V.P., Osipov N.A., Raigel’ V.I., Repkov V.V., Selivanov A.N., Spektor A.A., Stakheev A.V., Yudin A.N. Automated image processing of natural complexes of Siberia (In Russ.). Nauka, Novosibirsk, 1988. 222 p.

2. Chaban L.N. Theory and algorithms of pattern recognition: a tutorial (In Russ.). MIIGAIK, Moscow, 2004. 290 p.

3. Chopra S., Marfurt K.J. Unsupervised machine learning applications for seismic facies classification // Proceeding of the 7th Unconventional Resources Technology Conference. Denver, 2019. Paper URTEC-2019-557-MS. doi:10.15530/urtec-2019-557.

4. Coleou T., Poupon M., Azbel K. Unsupervised seismic facies classification: A review and comparison of techniques and implementation // The Leading Edge. 2003. Vol. 22 (10). P. 942–953. doi:10.1190/1.1623635.

5. Durand B., Odel P. Cluster analysis (In Russ.). Moscow, 1977. 128 p.

6. Friedman N., Geiger D., Goldszmidt M. Bayesian network classifiers // Machine Learning. 1997. Vol. 29 (2–3). P. 131–163. doi:10.1023/A:1007465528199.

7. Khachumov M.V. Distances, metrics and cluster analysis // Scientific and Technical Information Processing. 2012. Vol. 39 (6). P. 310–316. doi:10.3103/S0147688212060020.

8. Kohonen T. Self-organized formation of topologically correct feature maps // Biological Cybernetics. 1982. Vol. 43. P. 59–69. doi:10.1007/BF00337288.

9. MacQueen J. Some methods for classification and analysis of multivariate observations // Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California, Los Angeles LA USA, 1967. P. 281–297.

10. Mitrofanov G.M., Kovalenko I.A., Korytkin E.I. Application of seismic facies analysis using attributes for reservoir prediction // Russian Journal of Geophysical Technologies. 2024. No. 3. P. 33–45. (In Russ.). doi:10.18303/2619-1563-2024-3-33

11. Myasnikov V.V. Pattern recognition and machine learning. Basic approaches: a tutorial (In Russ.). Samara: Samara University Publishing House, 2023. 196p.

12. Nilson N. Learning machines (In Russ.). Mir, Moscow, 1967. 180 p.

13. Owusu B.A., Boateng C.D., Asare V.S., Danuor S.K., Adenutsi C.D., Quaye J.A. Seismic facies analysis using machine learning techniques: a review and case study // Earth Science Informatics. 2024. Vol. 17. P. 3899–3924. doi:10.1007/s12145-024-01395-3.

14. Priezzhev I.I., Solokha E.V., Manral S. Facies analysis based on 3D seismic waveform (In Russ.) // Geofizika. 2014. No. 1. P. 63–67.

15. Rijks E.J.H., Jauffred J.C.E.M. Attribute extraction: an important application in any detailed 3-D interpretation study // The Leading Edge. 1991. Vol. 10 (9). P. 11–19. doi:10.1190/1.1436837.

16. Tu J., Gonzalez R. Principles of pattern recognition (In Russ.). Mir, Moscow, 1978. 411p.

17. Vapnik V.N. Restoration of dependencies based on empirical data (In Russ.). Nauka, Moscow, 1979. 448 p.

18. Verma S., Roy A., Perez R., Marfurt K.J. Mapping high frackability and high TOC zones in the Barnett Shale: Supervised Probabilistic Neural Network vs. unsupervised multi-attribute Kohonen SOM // SEG Technical Program Expanded Abstracts. 2012. P. 1–5. doi:10.1190/segam2012-1494.1.

19. Voronina V.V., Mikheev A.V., Yarushkina N.G., Svyatov K.V. Theory and practice of machine learning: a tutorial (In Russ.). UlSTU, Ulyanovsk, 2017. 70 p.

20. Vyugin V.V. Mathematical foundations of the theory of machine learning and forecasting (In Russ.). Moscow, 2013. 387 p.

21. Wickramasinghe I., Kalutarage H. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation // Soft Computing. 2021. Vol. 25 (3). P. 2277–2293. doi:10.1007/s00500-020-05297-6.

22. Zhao T., Jayaram V., Roy A., Marfurt K.J. A comparison of classification techniques for seismic facies recognition // Interpretation. 2015. Vol. 3 (4). P. SAE29–SAE58. doi:10.1190/INT-2015-0044.1.


Review

For citations:


Korytkin E.I., Mitrofanov G.M., Kamashev A.M. Machine learning methods in seismic facies analysis problems. Russian Journal of Geophysical Technologies. 2024;(4):50-63. (In Russ.) https://doi.org/10.18303/2619-1563-2024-4-50

Views: 171


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)