Acoustic measurements and X-ray tomography of sand samples containing xenon hydrate
https://doi.org/10.18303/2619-1563-2019-4-17
Abstract
The work describes a new developed cell, which allows simultaneous acoustic measurements and X-ray tomography of hydrate-bearing samples. The results of the first experiments on the formation of xenon hydrate in a sand sample by the “excess gas” method are presented. The formation of gas hydrate in the sample led to compressional wave velocity increase associated with cementation of granules with hydrate. The obtained tomographic images showed that formed xenon hydrate envelops sand granules. A uniform distribution of hydrate in the pore space in the scan area is also observed.
About the Authors
A. N. DrobchikRussian Federation
Koptyug Ave., 3, Novosibirsk, 630090, Russia
G. A. Dugarov
Russian Federation
Koptyug Ave., 3, Novosibirsk, 630090, Russia
A. A. Duchkov
Russian Federation
Koptyug Ave., 3, Novosibirsk, 630090, Russia; Pirogova Str., 1, Novosibirsk, 630090, Russia
K. E. Kuper
Russian Federation
Lavrentiev Ave., 11, Novosibirsk, 630090, Russia
References
1. Дучков А.Д., Дугаров Г.А., Дучков А.А., Дробчик А.Н. Лабораторные исследования скорости и поглощения ультразвуковых волн в песчаных образцах, содержащих воду/лед, гидраты метана и тетрагидрофурана // Геология и геофизика. – 2019. – Т. 60, № 2. – С. 230–242.
2. Дучков А.Д., Дучков А.А., Дугаров Г.А., Дробчик А.Н. Скорости ультразвуковых волн в песчаных образцах, содержащих воду, лед или гидраты метана и тетрагидрофурана (лабораторные измерения) // Доклады академии наук. – 2018. – Т. 478, № 1. – С. 94–99.
3. Истомин В.А., Моисейкин П.А., Абрашов В.Н., Федулов Д.М., Черных В.В., Медведев С.Г., Сопнев Т.В. Гидратообразование в призабойной зоне пласта при освоении туронских залежей Западной Сибири // Вести газовой науки. – 2013. – № 5. – С. 99–104.
4. Макогон Ю.Ф., Омельченко Р.Ю. Мессояха – газогидратная залежь, роль и значение // Геология и полезные ископаемые мирового океана. – 2012. – № 3. – С. 5–19.
5. Bultreys T., De Boever W., Cnudde V. Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art // Earth-Science Reviews. – 2016. – Vol. 155. – P. 93–128.
6. Chaouachi M., Falenty A., Sell K., Enzmann F., Kersten M., Haberthür D., Kuhs W.F. Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X-ray computed tomographic microscopy // Geochemistry. Geophysics. Geosystems. – 2015. – Vol. 16. – P. 1711–1722.
7. Chong Z.R., Yang S.H.B., Babu P., Linga P., Li X.-S. Review of natural gas hydrates as an energy resource: Prospects and challenges // Applied Energy. – 2016. – Vol. 162. – P. 1633–1652.
8. Dugarov G.A., Duchkov A.A., Duchkov A.D., Drobchik A.N. Laboratory validation of effective acoustic velocity models for samples bearing hydrates of different type // Journal of Natural Gas Science and Engineering. – 2019. – Vol. 63. – P. 38–46.
9. Fusseis F., Xiao X., Schrank C., De Carlo F. A brief guide to synchrotron radiation-based microtomography in (structural) geology and rock mechanics // Journal of Structural Geology. – 2014. – Vol. 65. – P. 1–16.
10. Jin Y., Konno Y., Nagao J. Pressurized subsampling system for pressurized gashydrate-bearing sediment: microscale imaging using X-ray computed tomography // Review of Scientific Instruments. – 2014. – Vol. 85. – 094502.
11. Kulenkampff J., Spangenberg E. Physical properties of cores from the Mallik 5L-38 gas hydrate production research well under simulated in situ conditions using the Field Laboratory Experimental Core Analysis System (FLECAS) // Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada / Eds. S.R. Dallimore, T.S. Collett – Geological Survey of Canada, 2005. – Bulletin 585. – 16 p. https://doi.org/10.4095/220734
12. Priegnitz M., Thaler J., Spangenberg E., Rücker C., Schicks J.M. A cylindrical electrical resistivity tomography array for three-dimensional monitoring of hydrate formation and dissociation // Review of Scientific Instruments. – 2013. – Vol. 84. – 104502.
13. Sell K., Saenger E.H., Falenty A., Chaouachi M., Haberthür D., Enzmann F., Kuhs W.F., Kersten M. On the path to the digital rock physics of gas hydrate-bearing sediments – processing of in situ synchrotron-tomography data // Solid Earth. – 2016. – Vol. 7. – P. 1243–1258.
14. Waite W.F., Santamarina J.C., Cortes D.D., Dugan B., Espinoza D.N., Germaine J., Jang J., Jung J.W., Kneafsey T.J., Shin H., Soga K., Winters W.J., Yun T.-S. Physical properties of hydrate-bearing sediments // Review of Geophysics. – 2009. – Vol. 47. – RG4003.
15. Winters W.J., Dillon W.P., Pecher I.A., Mason D.H. GHASTLI – determining physical properties of sediment containing natural and laboratory-formed gas hydrate // Natural gas hydrate in oceanic and permafrost environments. – Springer, 2000. – P. 311–322.
Review
For citations:
Drobchik A.N., Dugarov G.A., Duchkov A.A., Kuper K.E. Acoustic measurements and X-ray tomography of sand samples containing xenon hydrate. Russian Journal of Geophysical Technologies. 2019;(4):17-23. (In Russ.) https://doi.org/10.18303/2619-1563-2019-4-17