Preview

Russian Journal of Geophysical Technologies

Advanced search

Relation of integrated dielectric permeability of oil with its physical and chemical properties and NMR characteristics

https://doi.org/10.18303/2619-1563-2019-4-24

Abstract

The paper presents the results of an analytical review of the study properties rocks and their saturating fluids by dielectric spectroscopy, as well as experimental studies of their complex dielectric constant and NMR characteristics. The connection of the complex dielectric constant of oil with its geochemical properties and NMR characteristics is established.

About the Authors

A. A. Mezin
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Russian Federation
Koptyug Ave., 3, Novosibirsk, 630090, Russia


M. Y. Shumskayte
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Russian Federation
Koptyug Ave., 3, Novosibirsk, 630090, Russia


N. A. Golikov
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS; Novosibirsk State University; Novosibirsk State Technical University
Russian Federation
Koptyug Ave., 3, Novosibirsk, 630090, Russia; Pirogova Str., 1, Novosibirsk, 630090, Russia; 630073, Novosibirsk, Karl Marx Ave., 20, Russia


A. I. Burukhina
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS; Novosibirsk State University
Russian Federation
Koptyug Ave., 3, Novosibirsk, 630090, Russia; Pirogova Str., 1, Novosibirsk, 630090, Russia


References

1. Беляева Т.А., Бобров П.П., Миронов В.Л., Родионова О.В. Зависимости диэлектрической проницаемости связанной воды в бентоните от влажности и температуры // Современные проблемы дистанционного зондирования Земли из космоса. – 2014. – Т. 11, № 3. – С. 288–300.

2. Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. – М.: Физматгиз, 1963. – 404 с.

3. Воробьев Е.А., Михайлов В.Ф., Харитонов А.А. СВЧ диэлектрики в условиях высоких температур – М.: Советское радио, 1977. – 208 с.

4. Коатес Д., Хиао Л., Праммер М. Каротаж ЯМР. Принципы и применение. – Хьюстон: Халлибуртон Энерджи Сервисез, 2001. – 342 с.

5. Шумскайте М.Й., Бобров П.П., Лапина А.С. Изменение диэлектрической проницаемости и ЯМР-сигнала влажных порошков кварцевых гранул при увеличении и уменьшении водонасыщенности // Геология, геофизика и разработка нефтяных и газовых месторождений. – 2016. – № 5. – С. 15–20.

6. Эпов М.И., Бобров П.П., Миронов В.Л., Репин А.В. Диэлектрическая релаксация в глинистых нефтесодержащих породах // Геология и геофизика. – 2011. – Т. 52, № 9. – С. 1302–1309.

7. Bobrov P.P., Yashchenko A.S., Rodionova O.V., Repin A.V., Lapina A.S. The electrical characteristics of the rocks with different texture // Progress in electromagnetics research symposium proceedings – 2015. – Vol. 1. – P. 1881–1884.

8. Carr H.Y., Purcell E.M. Effects of diffusion on free precession in nuclear magnetic resonance experiments // Physical review. – 1954. – Vol. 94. – P. 630–638.

9. Chelidze T.L., Derevyanko A.I., Kurilenko O.D. Electrical spectroscopy of heterogeneous systems. – Kiev: Naukova dumka, 1977. – P. 9–215.

10. Dunn K.J., Bergman D.J., LaTorracca G.A. Nuclear magnetic resonance. Petrophysical and logging application. – London: PERGAMON, 2002. – 294 p.

11. Gomez-Sanchez J.A., Felice C.J. Description of corrections on electrode polarization impedance using isopotential interface factor // Journal Electrical Bioimpedance. – 2012. – Vol. 3. – P. 29–35.

12. Lapina A.S., Bobrov P.P., Golikov N.A., Repin A.V., Shumskayte M.Y. Hysteresis of the NMR response and the complex relative permittivity of the quartz granules powders and solid sandstones during the water imbibition and drainage // Measurement science and technology. – 2017. – Vol. 28, No. 1. – P. 014007.

13. Levitskaya T.M., Sternberg B.K. Polarization processes in rocks 1. Complex dielectric Permittivity method // Radio science. –1996. – No. 4. – P. 755–779.

14. Meiboom S., Gill D. Modifies spin-echo method for measuring nuclear relaxation times // Review scientific instruments. – 1958. – Vol. 29. – P. 688–691.

15. Quéffélec P., Mallégol S., LeFloc'h M. Automatic measurement of complex tensorial permeability of magnetized materials in a wide microwave frequency range // IEEE transactions on microwave theory and techniques. – 2002. – Vol. 50, No. 9. – P. 2128–2134.

16. Scott J.H., Carroll R. D., Cunningham D. R. Dielectric constant and electrical conductivity measurements of moist rock: a new laboratory method // Journal of Geophysical Research. – 1967. – Vol. 72, No. 20. – P. 5101–5115.

17. Sus A.N., Berezin V.V., Borovkova I.P. Dielectric permittivity measurement of high conductivity substances // Izv. Vyssh. Uchebn. Zaved. Fiz. – 1971. – No. 9. – P. 133–135.

18. Valeev K.A., Parkhomenko E.I. Electrical properties of rocks in constant and variable electric fields // Izv. Phys. Solid Earth. – 1965. – Vol. 1. – P. 803–806.

19. Wakamatsu H. A dielectric spectrometer for liquid using the electro-magnetic induction method // Hewlett-Packard Journal. – 1997. – No. 48. – P. 37–44.


Review

For citations:


Mezin A.A., Shumskayte M.Y., Golikov N.A., Burukhina A.I. Relation of integrated dielectric permeability of oil with its physical and chemical properties and NMR characteristics. Russian Journal of Geophysical Technologies. 2019;(4):24-34. (In Russ.) https://doi.org/10.18303/2619-1563-2019-4-24

Views: 600


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)