Quantitative evaluation of spatial resolution in seismic tomography
https://doi.org/10.18303/2619-1563-2020-2-4
Abstract
We consider a problem of formal evaluation of spatial resolution in seismic tomography. We have shown that a traditional method of resolution estimate based on calculation of the resolution matrix appears to be misleading in a case of using the parameterization grid with different spacing. We have proposed an alternative algorithm based on reconstruction of a series of unit anomalies of fixed shapes. Furthermore, we have developed an algorithm for the direction dependent resolution estimates.
About the Authors
I. Yu. KoulakovRussian Federation
Koptyug Ave., 3, Novosibirsk, 630090, Russia; Pirogova Str., 1, Novosibirsk, 630090, Russia
N. A. Schelkanova
Russian Federation
Koptyug Ave., 3, Novosibirsk, 630090, Russia; Pirogova Str., 1, Novosibirsk, 630090, Russia
T. A. Stupina
Russian Federation
Koptyug Ave., 3, Novosibirsk, 630090, Russia; Pirogova Str., 1, Novosibirsk, 630090, Russia
References
1. Кулаков И.Ю. Алгоритм линеаризованной томографии BASIC TOMO // Геофизические технологии. – 2020. – № 1. – С. 40–54.
2. Daly E., Keir D., Ebinger C.J., Stuart G.W., Bastow I.D., Ayele A. Crustal tomographic imaging of a transitional continental rift: The Ethiopian rift // Geophysical Journal International. – 2008. – Vol. 172, No. 3. – P. 1033–1048.
3. Humphreys E., Clayton R.W. Adaptation of back projection tomography to seismic travel time problems // Journal of Geophysical Research. Solid Earth. – 1988. – Vol. 93 (B2). – P. 1073–1085.
4. Husen S., Smith R.B., Waite G.P. Evidence for gas and magmatic sources beneath the Yellowstone volcanic field from seismic tomographic imaging // Journal of Volcanology and Geothermal Research. – 2004. – Vol. 131, Issues 3–4. – P. 397–410.
5. Kissling E., Husen S., Haslinger F. Model parametrization in seismic tomography: A choice of consequence for the solution quality // Physics of the Earth and Planetary Interiors. – 2001. – Vol. 123, Issues 2–4. – P. 89–101.
6. Koulakov I., Stupina T., Kopp H. Creating realistic models based on combined forward modeling and tomographic inversion of seismic profiling data // Geophysics. – 2010. – Vol. 75, Issue 3, Article B115.
7. Nolet G. Seismic wave propagation and seismic tomography // Seismic Tomography. With Application in Global Seismology and Exploration Geophysics. – Dordrecht, Springer, 1987. – P. 1–23.
8. Paige C.C., Saunders M.A. LSQR: An algorithm for sparse linear equations and sparse least squares // ACM Transactions on Mathematical Software. – 1982. – Vol. 8, No. 1. – P. 43–71.
9. Patanè D., Barberi G., Cocina O., De Gori P., Chiarabba C. Time-resolved seismic tomography detects magma intrusions at Mount Etna // Science. – 2006. – Vol. 313, Issue 5788. – P. 821–823.
10. Reyners M., Eberhart-Phillips D., Stuart G. A three-dimensional image of the shallow subduction: crustal structure of the Raukumara Peninsula, New Zealand // Geophysical Journal International. – 1999. – Vol. 137, Issue 3. – P. 873–890.
11. Song L.P., Zhang S.Y. Singular value decomposition-based reconstruction algorithm for seismic traveltime tomography // IEEE transactions on image processing. – 1999. – Vol. 8, No. 8. – P. 1152–1154.
12. Spakman W., Nolet G. Imaging algorithms, accuracy, and resolution in delay time tomography // Mathematical Geophysics. – Reidel, Dordrecht, 1988. – P. 155–187.
13. Yao Z.S., Roberts R.G., Tryggvason A. Calculating resolution and covariance matrices for seismic tomography with the LSQR method // Geophysical Journal International. – 1999. – Vol. 138, Issue 3. – P. 886–894.
Review
For citations:
Koulakov I.Yu., Schelkanova N.A., Stupina T.A. Quantitative evaluation of spatial resolution in seismic tomography. Russian Journal of Geophysical Technologies. 2020;(2):4-17. (In Russ.) https://doi.org/10.18303/2619-1563-2020-2-4