Preview

Russian Journal of Geophysical Technologies

Advanced search

Study of the influence of anisotropy parameters on reflection coefficients from a boundary between two azimuthally anisotropic media

https://doi.org/10.18303/2619-1563-2020-2-18

Abstract

The paper considers an algorithm for calculating reflection coefficients from boundary between two HTI media. Analysis of the presence of anisotropy above and below the target boundary, as well as variations in the parameters of HTI media, was done. Interpretation of reflection data from the boundary between two HTI media with neglect of anisotropy above or below potentially leads to significant errors in estimation of symmetry axes directions, and hence fracturing orientation. Overestimation/underestimation of an elastic parameter in the overlying HTI medium could lead to a corresponding overestimation/underestimation of similar parameter in the underlying target layer in the result of AVAZ inversion. Furthermore, among the anisotropy parameters Thomsen parameter γ has most significant influence on the reflection coefficients dependences. Thus, the parameter γ could be used foremost as a result of the AVAZ inversion.

About the Authors

G. A. Dugarov
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Russian Federation
Koptyug Ave., 3, Novosibirsk, 630090, Russia


R. K. Bekrenev
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Russian Federation
Koptyug Ave., 3, Novosibirsk, 630090, Russia


T. V. Nefedkina
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Russian Federation
Koptyug Ave., 3, Novosibirsk, 630090, Russia


References

1. Лыхин П.А., Нефедкина Т.В. Потенциал нелинейной AVOA-инверсии отраженных продольных волн для изучения трещиноватых карбонатный коллекторов нефти и газа // Технологии сейсморазведки. – № 2. – 2017. – С. 59–68.

2. Нефедкина Т.В., Лыхин П.А. Применимость линеаризованных аппроксимаций коэффициента отражения продольных волн для азимутального анализа амплитуд PP-отражений в анизотропных средах // Технологии сейсморазведки. – 2016. – № 4. – С. 21–32.

3. Нефедкина Т.В., Лыхин П.А., Дугаров Г.А. Определение упругих параметров азимутально-анизотропных сред из многоволновых AVOA-данных методом нелинейной оптимизации // Геофизические технологии. – 2018. – № 2. – С. 14–26.

4. Bakulin A., Grechka V., Tsvankin I. Estimation of fracture parameters from reflection seismic data – Part I: HTI model due to a single fracture set // Geophysics. – 2000a. – Vol. 65, No. 6. – P. 1788–1802.

5. Bakulin A., Grechka V., Tsvankin I. Estimation of fracture parameters from reflection seismic data – Part II: Fractured models with orthorhombic symmetry // Geophysics. – 2000b. – Vol. 65, No. 6. – P. 1803–1817.

6. Bakulin A., Grechka V., Tsvankin I. Estimation of fracture parameters from reflection seismic data – Part III: Fractured models with monoclinic symmetry // Geophysics. – 2000c. – Vol. 65, No. 6. – P. 1818–1830.

7. Downton J., Roure B., Hunt L. Azimuthal Fourier coefficients // CSEG Recorder. – 2011. – Vol. 36, No. 10. – P. 22–36.

8. Luo M., Evans B.J. 3D fracture assessment using AVAz and a layer-stripping approach // Exploration Geophysics. – 2003. – Vol. 34. – P. 1–6.

9. Olneva T., Semin D., Inozemtsev A., Bogatyrev I., Ezhov K., Kharyba E. and Koren Z. Improved seismic images through full-azimuth depth migration: updating the seismic geological model of an oil field in the pre-neogene base of the Pannonian Basin // First Break. – 2019. – Vol. 37, No 10. – P. 91–97.

10. Rüger, A. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry // Geophysics. – 1997. – Vol. 62. – P. 713–722.

11. Rüger, A. Reflection coefficients and azimuthal AVO analysis in anisotropic media. Geophysical monograph series. – Tulsa, SEG, 2001. – No. 10. – 188 p.

12. Schoenberg. M, Protazio J. ‘Zoeppritz’ rationalized and generalized to anisotropy // Journal of Seismic Exploration. – 1992. – P. 125–144.

13. Slawinski M.A., Slawinski R.A., Brown R.J., Parkin J.M. A generalized form of Snell’s law in anisotropic media // Geophysics. – 2000. – Vol. 65, No. 2. – P. 632–637.

14. Tsvankin I. Reflection moveout and parameter estimation for horizontal transverse isotropy // Geophysics. – 1997. – Vol. 62, No. 2. – P. 614–629.

15. Vavryčuk V., Pšenčik I. PP-wavereflection coefficients in weakly anisotropic media // Geophysics. – 1998. – Vol. 63. – P. 2129–2141.


Review

For citations:


Dugarov G.A., Bekrenev R.K., Nefedkina T.V. Study of the influence of anisotropy parameters on reflection coefficients from a boundary between two azimuthally anisotropic media. Russian Journal of Geophysical Technologies. 2020;(2):18-29. (In Russ.) https://doi.org/10.18303/2619-1563-2020-2-18

Views: 569


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)