Preview

Russian Journal of Geophysical Technologies

Advanced search

Overview of modern hardware and software for near surface electromagnetic sounding in the frequency domain

https://doi.org/10.18303/2619-1563-2021-1-52

Abstract

For the study of the first ten meters of the ground, instruments operating in the frequency domain are most widely used. The compactness, speed of operation, ease of operation of such equipment, as well as the quality of the information obtained, determine its applicability for solving a wide range of issues: from searching for local objects to identifying structural features of the upper part of the section. The article provides an overview of current hardware and software developments for near surface electromagnetic soundings in the frequency domain. A description of all types of non-contact equipment from major world manufacturers is given. The features of both the hardware itself and the approaches to their implementation are described. Methods of primary processing and data inversion are considered. Conclusions are drawn about the need to find new ways to eliminate of equipment deficiencies.

About the Authors

E. V. Balkov
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Koptyug Ave., 3, Novosibirsk, 630090
Russian Federation


D. I. Fadeev
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Koptyug Ave., 3, Novosibirsk, 630090
Russian Federation


References

1. Andrade F.C.M., Fischer T. Generalised relative and cumulative response functions for electromagnetic induction conductivity meters operating at low induction numbers // Geophysical Prospecting. – 2018. – Vol. 66 (3). – P. 595–602, doi: 10.1111/1365-2478.12553.

2. Auken E., Christiansen A.V., Jacobsen B.H., Foged N., Sørensen K.I. Piecewise 1D laterally constrained inversion of resistivity data // Geophysical Prospecting. – 2005. – Vol. 53 (4). – P. 497–506, doi: 10.1111/j.1365-2478.2005.00486.x.

3. Baidikov S.V., Chelovechkov A.I. Equipment for induction sounding MChZ-8 // Ural Geophysical Bulletin. – 2011. – Vol. 1 (18). – P. 4–8.

4. Baidikov S.V., Ivanov N.S., Ratushnyak A.N., Utkin V.I., Chelovechkov A.I. Geoelectrical prospecting method: US Pat. 2250479 Russian Federation, IPC G01V 3/08; Applicant and patentee of IGF UB RAS; declared 25.10.2002, publ. 20.04.2005. – 2005. – Bul. No. 11. – 11 p.

5. Balkov E.V. Shallow frequency sounding in real time: hardware and software [Electronic resource] // Proceeding of IV All-Russian School-Seminar on Electromagnetic Sounding of the Earth (Moscow, September 1–4, 2009). – Moscow, 2009. – 2 p.

6. Balkov E.V. Multiple images in the signal from local objects during electromagnetic profiling with a compact probe with spaced-apart coils [Electronic resource] // Proceeding of All-Russian School-Seminar named after M.N. Berdichevsky and L.L. Vanyan on electromagnetic sounding of the Earth (St. Petersburg, May 16–21, 2011). – St. Petersburg, 2011. – 4 p.

7. Balkov E.V., Adaykin A.A. Control of equipment of frequency electromagnetic sounding using a pocket computer // Geoinformatics. – 2008. – No. 4. – P. 33–38.

8. Balkov E.V., Stoikin T.A. Shallow frequency sounding in the search for local conducting targets // Proceeding of VII International Exhibition and Scientific Congress "GEO-Siberia-2011" (Novosibirsk, April 19–29, 2011. – Novosibirsk, 2011. – Vol. 2 (1). – P. 179–185.

9. Balkov E.V., Manstein Yu., Panin G.L., Beloborodov V.A. Certificate of state registration of the EMS Control computer program; Testimony about register. prog. No. 2015616582; RU; No. 2014663924, app. 12/29/2014, publ. 15.06.2015.

10. Callegary J.B., Ferré T.P.A., Groom R.W. Vertical spatial sensitivity and exploration depth of low-induction-number electromagnetic-induction Instruments // Vadose Zone Journal. – 2007. – Vol. 6 (1). – P. 158–167, doi: 10.2136/vzj2006.0120.

11. Chelovechkov A.I., Chistoserdov B.M. Method of induction vertical sounding: US Pat. 2156987 Russian Federation, IPC G01V 3/08; Applicant and patentee of IGF UB RAS; declared 13.10.1998, publ. September 27, 2000.

12. Chelovechkov A.I., Konoplin A.D., Ivanov N.S., Astafiev P.F., Vishnev V.S., Djakonova A.G. Measuring device for geoelectrical exploration: US Pat. 2207596 Russian Federation, IPC G01V 3/08; Applicant and patentee of IGF UB RAS; declared 20.07.2001, publ. June 27, 2003.

13. Chistoserdov B.M., Chelovechkov A.I., Baidikov S.V. Method of induction vertical sounding: US Pat. 2230341 Russian Federation, IPC G01V 3/08; Applicant and patentee of IGF UB RAS; declared 10.12.2002, publ. June 10, 2004. – 2004a.

14. Chistoserdov B.M., Chelovechkov A.I., Baidikov S.V. Induction vertical method sounding // Ural Geophysical Bulletin. – 2004b. – Vol. 1 (6). – P. 112–114.

15. Chelovechkov A.I., Baidikov S.V., Ratushnyak B.M, Chistoserdov B.M. Geoelectrical prospecting method: US Pat. 2302018 Russian Federation, IPC G01V 3/08; Applicant and patentee of IGF UB RAS; declared June 21, 2005, publ. 27.06.2007. – 2007. – Bul. No. 18. – 15 p.

16. Chelovechkov A.I., Ratushnyak B.M., Baidikov S.V., Astafiev P.F. Geoelectrical prospecting method: US Pat. 2410730 Russian Federation, IPC G01V 3/16; Applicant and patentee of IGF UB RAS; declared September 16, 2008, publ. 27.01.2011. – 2011. – Bul. No. 3. – 11 p.

17. Chelovechkov A.I., Baidikov S.V., Davydov V.A., Zhuravleva R.B. Geoelectrical prospecting method: US Pat. 2460097 Russian Federation, IPC G01V 3/08; Applicant and patentee of IGF UB RAS; declared 05/12/2010, publ. 27.08.2012. –2012. – Bul. No. 24. – 8 p.

18. Christiansen A.V., Auken E., Foged N., Sørensen K.I. Mutually and laterally constrained inversion of CVES and TEM data: a case study // Near Surface Geophysics. – 2007. – Vol. 5 (2). – P. 115–123, doi: 10.3997/1873-0604.2006023.

19. Epov M.I., Yeltsov I.N., Antonov A.A., Vlasov E.V., Balkov E.V., Fage A.N. Certificate of state registration of the computer program EMS v.2.0; St. about the register. prog. No. 2018614716; RU; No. 2018610657, app. 25.01.2018, publ. 04.17.2018.

20. Huang H. Depth of investigation for small broadband electromagnetic sensors // Geophysics. – 2005. – Vol. 70 (6). – P. G135–G142, doi: 10.1190/1.2122412.

21. Huang H., Fraser D.C. The differential parameter method for multifrequency airborne resistivity mapping // Geophysics. – 1996. – Vol. 61 (1). – P. 100–109, doi: 10.1190/1.1574674.

22. Huang H., Fraser D.C. Magnetic permeability and electrical resistivity mapping with a multifrequency airborne EM system // Exploration Geophysics. – 1998. – Vol. 29 (1–2). – P. 249–253, doi: 10.1071/EG998249.

23. Huang H., Fraser D.C. Airborne resistivity data leveling // Geophysics. – 1999. – Vol. 64 (2). – P. 378–385, doi: 10.1190/1.1444542.

24. Huang H., Fraser D.C. Airborne resistivity and susceptibility mapping in magnetically polarizable areas // Geophysics. – 2000. – Vol. 65 (2). – P. 502–511, doi: 10.1190/1.1444744.

25. Huang H., Fraser D.C. Mapping of the resistivity, susceptibility, and permittivity of the earth using a helicopter-borne electromagnetic system // Geophysics. – 2001. – Vol. 66 (1). – P. 148–157, doi: 10.1190/1.1444889.

26. Huang H., Fraser D.C. The use of quad-quad resistivity in helicopter electromagnetic mapping // Geophysics. – 2002. – Vol. 67 (2). – P. 459–467, doi: 10.1190/1.1468605.

27. Huang H., Fraser D.C. Inversion of helicopter electromagnetic data to a magnetic conductive layered earth // Geophysics. – 2003. – Vol. 68 (4). – P. 1211–1223, doi: 10.1190/1.1598113.

28. Huang H., Won I.J. Real-time resistivity sounding using a handheld broadband electromagnetic sensor // Geophysics. – 2003. – Vol. 68 (4). – P. 1224 –1231, doi: 10.1190/1.1598114.

29. Huang H., Deszcz-Pan M., Smith B. Limitations of small EM sensors in resistive terrain // Symposium on the Application of Geophysics to Engineering and Environmental Problems Proceedings. – 2008. – P. 163–180, doi: 10.4133/1.2963255.

30. Ivanov N.S., Chelovechkov A.I. Geoelectrical prospecting method: US Pat. 2172499 Russian Federation, IPC G01V 3/08; Applicant and patentee of IGF UB RAS; declared 06/13/2000, publ. 20.08.2001.

31. Kaufman A.A., Keller G.V. Methods in geochemistry and geophysics. Frequency and transient soundings. – Amsterdam, Oxford, New York, Tokyo, Elsevier, 1983. – 685 p.

32. Keller G.V., Frischknecht F.C. Electrical Methods in Geophysical Prospecting. – Oxford, Permagon Press, 1966.

33. Manstein A.K., Epov M.I., Voevoda V.V., Sukhorukova K.V. Method of induction frequency sensing: US Pat. 2152058 Russian Federation, IPC G01V 3/10; Applicant and patentee of INGG SB RAS; declared 24.06.1998, publ. 2000. – 2000. – Bul. No. 18. – 4 p.

34. Manstein Yu., Manstein A., Morelli G., Abu Zeid N., Santarato G. Electromagnetic multifrequency sounding device EMS, prototype 2. Comparison with commercial tools // Geophysical Research Abstracts Journal, European Geophysical Society. – 2003. – Vol. 5. – P. 00208.

35. Manstein A.K., Panin G.L., Tikunov S.Yu. A device for shallow frequency-domain electromagnetic induction sounding // Russian Geology and Geophysics. – 2008. – Vol. 49 (6). – P. 430–436, doi: 10.1016/j.rgg.2007.10.013.

36. Manstein A.K., Epov M.I., Balkov E.V., Sukhorukova K.V. Method for calibrating a device for ground electromagnetic induction frequency sensing: US Pat. 2461850 Russian Federation, IPC G01V 13/00 (2006.01); Applicant and patentee of INGG SB RAS, No. 2010126402/28; declared 06/28/2010; publ. 20.09.2012. – 2012. – Bul. No. 26. – 5 p.

37. McNeill J.D. Electrical conductivity of soil and rocks // Tech. Note TN-5. Geonics Ltd., Mississauga. – Ontario, Geonics Limited. – 1980a. – 22 p.

38. McNeill J.D. Electromagnetic terrain conductivity measurement at low induction numbers // Tech. Note TN-6. Geonics Ltd., Mississauga. – Ontario, Geonics Limited. – 1980b. – P. 015–021.

39. McNeill J.D. Use of EM31 inphase information // Tech. Note TN-11. Geonics Ltd., Mississauga. – Ontario, 1983. – 3 p.

40. McNeill J.D. Why doesn't Geonics Limited build a multi-frequency EM31 or EM38? // Tech. Note TN-30. Geonics Ltd., Mississauga. – Ontario, 1996. – 6 p.

41. Ortuani B., Chiaradia E.A., Priori S., L’abate G., Canone D., Mele M., Comunian A., Giaudici M., Facchi A. Comparing EM38 and Profiler-EMP400 for the delineation of homogeneous management zones within agricultural fields // Proc. First Conference on Proximal Sensing Supporting precision agriculture (September 6–10, 2015). – Turin, 2015. – P. 1–5, doi: 10.3997/2214-4609.201413828.

42. Santos F.A.M., Triantafilis J., Taylor R.S., Holladay S., Bruzgulis K.E. Inversion of conductivity profiles from EM using full solution and a 1-D laterally constrained algorithm // Journal of Environmental and Engineering Geophysics. – Vol. 15 (3). – P. 163–174, doi: 10.2113/JEEG15.3.163. S.

43. Sekachev M.Yu., Balashov B.P., Sachenko G.V., Vechkanov O.P., Zakharkin A.K., Tarlo N.N., Mogilatov V.S., Zlobinsky A.V. Instrumental electrical prospecting complex "Cycle-7" // Instruments and Systems of Exploration Geophysics. – 2006. – No. 1. – P. 44–46.

44. Taylor R.S, Holladay J.S. Detailed Low-Induction-Number EM Sounding to 9-m Depth // Symposium on the Application of Geophysics to Engineering and Environmental Problems. – 2011. – P. 218–224, doi: 10.4133/1.3614303.

45. Taylor R.S. Mapping sites of environmental contamination with a dual-geometry electromagnetic (EM) system // SEG Technical Program Expanded Abstracts. – 2000. – P. 1374–1376, doi: 10.1190/1.1815655.

46. Triantafilis J., Santos A.M. Digital soil mapping with depth using EM38 and EM31 signal data and a 1-D laterally constrained inversion model // Symposium on the Application of Geophysics to Engineering and Environmental Problems Proceedings. – 2011. – P. 225, doi: 10.4133/1.3614304.

47. Trigubovich G.M., Persova M.G., Balyberdin A.L. Telemetric electrical exploration equipment of the "Impulse" series for 3D electrical prospecting on dense space-time observation networks // Instruments and systems of exploration geophysics. – 2006. – Vol. 2 (16). – P. 22–25.

48. Trigubovich G.M., Persova M.G., Soloveichik G.M. 3D-electrical prospecting by the formation of the field [in Russian]. – Novosibirsk: Nauka, 2009. – 222 p.

49. Wisén R., Auken E., Dahlin T. Combination of 1D laterally constrained inversion and 2D smooth inversion of resistivity data with a priori data from boreholes // Near Surface Geophysics. – 2005. – Vol. 3 (2). – P. 71–79, doi: 10.3997/1873-0604.2005002.

50. Won I.J., Keiswetter D.A., Fields G.R., Sutton L.C. GEM-2: A new multifrequency electromagnetic sensor // Journal of Environmental and Engineering Geophysics. – 1996. – Vol. 2 (1). – P. 129–138, doi: 10.4133/JEEG1.2.129.

51. Won I.J., Keiswetter D.A., Hanson D.R., Novikova E., Hall T.M. GEM-3: A monostatic broadband electromagnetic induction sensor // Journal of Environmental and Engineering Geophysics. – 1997. – Vol. 2. – P. 53–64, doi: 10.4133/JEEG2.1.53.


Review

For citations:


Balkov E.V., Fadeev D.I. Overview of modern hardware and software for near surface electromagnetic sounding in the frequency domain. Russian Journal of Geophysical Technologies. 2021;(1):52-72. (In Russ.) https://doi.org/10.18303/2619-1563-2021-1-52

Views: 541


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)