Study of properties of real vibroseis signals contaminated by harmonic noise
https://doi.org/10.18303/2619-1563-2022-1-30
Abstract
Properties of the ground force signal complicated by harmonics are studied. It is shown that the adaptation filters, that enable matching the amplitude- and phase- frequency characteristics of harmonics in the corresponding frequency range, have a simple form. The problem of focusing a signal containing harmonics using correlation and deconvolution is discussed. An example of using harmonics to expand the signal spectrum is given.
About the Authors
M. S. DenisovRussian Federation
Ordzhonikidze Str., 12/4, Moscow, 119071
A. A. Zykov
Russian Federation
Ordzhonikidze Str., 12/4, Moscow, 119071
References
1. Boganik G.N., Gurvich I.I. Seismic Exploration [in Russian]. – AIS, Tver, 2006. – 744 p.
2. Denisov M.S., Shneerson M.B. Utilization of harmonics to broaden the bandwidth in Vibroseismic. Part 2. // Seismic Technologies. – 2017. – Vol. 3. – P. 36–54.
3. Denisov M.S., Shneerson M.B. Nature of harmonics in the Vibroseis method and the possibility of their utilization to broaden the signal frequency band // Geofizika. – 2018. – Vol. 3. – P. 24–27.
4. Denisov M.S., Egorov A.A. Constructing a model of vibroseis signal complicated by harmonics // Russian Journal of Geophysical Technologies. – 2019а. – Vol. 1. – P. 72–83, doi: 10.18303/2619-1563-2019-1-72.
5. Denisov M.S., Egorov A.A. Optimization-based recursive filtering for vibroseis harmonic noise elimination // Russian Journal of Geophysical Technologies. – 2019b. – Vol. 2. – P. 23–53, doi: 10.18303/2619-1563-2019-2-23.
6. Denisov M.S., Egorov A.A., Kurin E.A., Shneerson M.B. Vibroseis harmonic noise elimination based on optimized recursive filtering // 81st EAGE Conference and Exhibition: Extended Abstracts (3–6 June 2019, London, UK). – EAGE, London, 2019. – P. 1–5, doi: 10.3997/2214-4609.201900843.
7. Denisov M.S., Egorov A.A., Shneerson M.B. Testing the optimization-based recursive filtering algorithm to suppress harmonics on model and field correlograms // Russian Journal of Geophysical Technologies. – 2019. – Vol. 2. – P. 54–66, doi: 10.18303/2619-1563-2019-2-54.
8. Denisov M.S., Egorov A.A., Shneerson M.B. Optimization‐based recursive filtering for separation of signal from harmonics in vibroseis // Geophysical Prospecting. – 2021. – Vol. 69 (4). – P. 779–798, doi: 10.1111/1365-2478.13084.
9. Gonorovsky I.S. Radio engineering circuits and signals [in Russian]. – Radio and communication, Moscow, 1986. – 512 p.
10. Kondratiev I.K. Linear processing systems in seismic exploration [in Russian]. – Nedra, Moscow, 1976. – 175 p.
11. Korn G., Korn T. Handbook of mathematics [in Russian]. – Nauka, Moscow, 1974. – 832 p.
12. Lamoureux M.P. Non-linear Vibroseis models for generating harmonics // CREWES Research Report – 2014. – Vol. 26. – P. 1–11.
13. Ollivrin G., Tellier N. SmartLF for robust and straightforward reduction of low-frequency distortion // 89th SEG Annual Meeting and Exposition: Expanded Abstracts. – 2019. – P. 17–20.
14. Rabiner L., Gould B. Theory and application of digital signal processing [in Russian]. – Mir, Moscow, 1978. – 848 p.
15. Robinson E., Treitel S. Digital signal processing in geophysics, in: Oppenheim E. (Ed.), Application of digital signal processing [in Russian]. – Mir, Moscow, 1980. – P. 486–544.
16. Seriff A.J., Kim W.H. The effect of harmonic distortion in the use of vibratory surface sources // Geophysics. – 1970. – Vol. 35 (2). – P. 234–246, doi: 10.1190/1.1440087.
17. Sylvia M.T., Robinson E.A. Inverse filtering of geophysical time series in oil and gas exploration [in Russian]. – Nedra, Moscow, 1983. – 447 p.
18. Varakin L.E. Theory of complex signals [in Russian]. – Soviet Radio, Moscow, 1970. – 376 p.
19. Vedernikov G.V., Maksimov L.A., Zharkov A.V. Study of multiple harmonics of vibroseis signals // Geofizika. – 2001. – Special Issue to 30th Anniversary of “Sibneftegeophysica”. – P. 33–38.
Review
For citations:
Denisov M.S., Zykov A.A. Study of properties of real vibroseis signals contaminated by harmonic noise. Russian Journal of Geophysical Technologies. 2022;(1):30-48. (In Russ.) https://doi.org/10.18303/2619-1563-2022-1-30