Determination of the contrast boundaries of the low velocity zone by analyzing the features of the dispersion curves of the Rayleigh wave velocities based on empirical dependencies
https://doi.org/10.18303/2619-1563-2023-2-16
Abstract
An important application of the multichannel surface wave (MASW) method is seismic safety assessment. The key parameters in the calculation of increments in the input of seismic microzoning are the thickness and average velocity of the soil mass lying on the base of more rigid rocks. To determine these parameters, we propose a new method for constructing horizontally layered models of the upper part of the geological section using the features (positions of extrema of the second derivative) of the dispersion curves of phase velocities of the Rayleigh surface wave, which, as shown by numerical experiments, are associated with the position of contrasting boundaries in the medium under study. (e.g., the boundary between soils and rocks). This approach is much simpler than the problem of recovering a horizontally layered model traditionally solved in the MASW method from a set of phase velocities for a sequence of frequencies and does not require an initial approximation and/or any restrictions on the possible values of the model parameters. In the case of two-layer and three-layer media, our approach is reduced to a simple and fast application of explicit formulas.
About the Authors
R. A. EfremovTrofimuk Institute of Petroleum Geology and Geophysics SB RAS
Koptyug Ave., 3, Novosibirsk, 630090
Novosibirsk State University
Pirogova Str., 1, Novosibirsk, 630090
Chinakal Institute of Mining SB RAS, Krasny Ave., 54, Novosibirsk, 630091
Russian Federation
A. S. Serdyukov
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Koptyug Ave., 3, Novosibirsk, 630090
Novosibirsk State University
Pirogova Str., 1, Novosibirsk, 630090
Chinakal Institute of Mining SB RAS, Krasny Ave., 54, Novosibirsk, 630091
Russian Federation
A. V. Yablokov
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Koptyug Ave., 3, Novosibirsk, 630090
Novosibirsk State University
Pirogova Str., 1, Novosibirsk, 630090
Chinakal Institute of Mining SB RAS, Krasny Ave., 54, Novosibirsk, 630091
Russian Federation
References
1. Abdialim S., Hakimov F., Kim J., Ku T., Moon S.W. Seismic site classification from HVSR data using the Rayleigh wave ellipticity inversion: A case study in Singapore // Earthquakes and Structures. – 2021. – Vol. 21 (3). – P. 231–238, doi: 10.12989/eas.2021.21.3.231.
2. Aleshin A.S. Apology of seismic rigidity method // Earthquake Engineering. Construction Safety. – 2016. – Vol. 3. – P. 13–21.
3. Boaga J., Cassiani G., Strobbia C.L., Vignoli G. Mode misidentification in Rayleigh waves: Ellipticity as a cause and a cure // Geophysics. – 2013. – Vol. 78 (4). – P. EN17–EN28, doi: 10.1190/geo2012-0194.1.
4. Constable S.C., Parker R.L., Constable C.G. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data // Geophysics. – 1987. – Vol. 52 (3). – P. 289–300, doi: 10.1190/1.1442303.
5. Cox B.R., Teague D.P. Layering ratios: a systematic approach to the inversion of surface wave data in the absence of a priori information // Geophysical Journal International. – 2016. – Vol. 207 (1). – P. 422–438, doi: 10.1093/gji/ggw282.
6. Dal Moro G. Some aspects about surface wave and HVSR analyses: a short overview and a case study // Bollettino di Geofisica Teorica ed Applicata. – 2011. – Vol. 52 (2). – P. 241–259, doi: 10.4430/bgta0007.
7. Mendiguren J.A. Inversion of surface wave data in source mechanism studies // Journal of Geophysical Research. – 1977. – Vol. 82 (5). – P. 889–894, doi: 10.1029/JB082i005p00889.
8. Mirjalili S., Mirjalili S.M., Lewis A. Grey wolf optimizer // Advances in Engineering Software. – 2014. – Vol. 69. – P. 46–61, doi: 10.1016/j.advengsoft.2013.12.007.
9. Nakamura Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface // Railway Technical Research Institute. Quarterly Reports. – 1989. – Vol. 30 (1). – P. 25–33.
10. Nakamura Y. What is the Nakamura method? // Seismological Research Letters. – 2019. – Vol. 90 (4). – P. 1437–1443, doi: 10.1785/0220180376.
11. Park C. MASW for geotechnical site investigation // The Leading Edge. – 2013. – Vol. 32 (6). – P. 656–662, doi: 10.1190/tle32060656.1.
12. Park C.B., Miller R.D., Xia J. Multichannel analysis of surface waves // Geophysics. – 1999. – Vol. 64 (3). – P. 800–808, doi: 10.1190/1.1444590.
13. Socco L.V., Boiero D. Improved Monte Carlo inversion of surface wave data // Geophysical Prospecting. – 2008. – Vol. 56 (3). – P. 357–371, doi: 10.1111/j.1365-2478.2007.00678.x.
14. Song X., Tang L., Zhao S., Zhang X., Li L., Huang J., Cai W. Grey wolf optimizer for parameter estimation in surface waves // Soil Dynamics and Earthquake Engineering. – 2015. – Vol. 75. – P. 147–157, doi: 10.1016/j.soildyn.2015.04.004.
15. SP 283.1325800.2016 "Construction objects of increased responsibility. Rules of seismic microdistricting". – Ministry of Construction of Russia, Moscow, 2016. – 24 p.
16. Yablokov A.V., Serdyukov A.S., Loginov G.N., Baranov V.D. An artificial neural network approach for the inversion of surface wave dispersion curves // Geophysical Prospecting. – 2021. – Vol. 69 (7). – P. 1405–1432, doi: 10.1111/1365-2478.13107.
17. Yablokov A.V., Lugovtsova Y., Serdyukov A.S. Uncertainty quantification of multimodal surface wave inversion using artificial neural networks // Geophysics. – 2023. – Vol. 88 (2). – P. KS1–KS11, doi: 10.1190/geo2022-0261.1.
Review
For citations:
Efremov R.A., Serdyukov A.S., Yablokov A.V. Determination of the contrast boundaries of the low velocity zone by analyzing the features of the dispersion curves of the Rayleigh wave velocities based on empirical dependencies. Russian Journal of Geophysical Technologies. 2023;(2):16-28. (In Russ.) https://doi.org/10.18303/2619-1563-2023-2-16