Preview

Russian Journal of Geophysical Technologies

Advanced search

3D Lomax rays and its application for acoustic wavefield simulation in complex media

https://doi.org/10.18303/2619-1563-2023-2-56

Abstract

We present a simple and robust approach for calculating frequency-dependent rays in three dimensional media. The proposed method simulates propagation of locally plane fragment of a wavefront. Ray properties depends on velocity distribution in some sub-volume around the ray and on wavelength in each point. Numerical experiment demonstrates the applicability of the proposed method to calculate travel-times and ray-based acoustic wavefields in complex 3D environments with the presence of slat intrusion.

About the Authors

D. A. Neklyudov
http://www.ipgg.sbras.ru/ru/institute/staff/neklyudovda
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Koptyug Ave., 3, Novosibirsk, 630090
Russian Federation


M. I. Protasov
http://www.ipgg.sbras.ru/ru/institute/staff/protasovmi
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Koptyug Ave., 3, Novosibirsk, 630090
Russian Federation


References

1. Aminzadeh F., Burkhard N., Long J., Kunz T., Duclos P. Three-dimensional SEG/EAGE models – An Update // The Leading Edge. – 1996. – Vol. 15 (2). – P. 131–134, doi: 10.1190/1.1437283.

2. Babich V.M., Buldyrev V.S. Asymptotical methods in problems of short-wavelength diffraction [in Russian]. – Nauka, Moscow, 1972.

3. Belonosov M., Dmitriev M., Kostin V., Neklyudov D., Tcheverda V. An iterative solver for the 3D Helmholtz equation // Journal of Computational Physics. – 2017. – Vol. 345. – P. 330–344, doi: 10.1016/j.jcp.2017.05.026.

4. Ben-Menahem A., Beydoun W.B. Range of validity of seismic ray and beam methods in general inhomogeneous media – I. General theory // Geophysical Journal International. – 1985. – Vol. 82 (2). – P. 207–234, doi: 10.1111/j.1365-246X.1985.tb05135.x.

5. Bube K.P., Washbourne J.K. Wave tracing: Ray tracing for the propagation of band-limited signals: Part 1 – Theory // Geophysics. – 2008. – Vol. 73 (5). – P. VE377–VE384, doi: 10.1190/1.2963514.

6. Bulant P., Klimeš L. Interpolation of ray theory traveltimes within ray cells // Geophysical Journal International. – 1999. – Vol. 139 (2). – P. 273–282, doi: 10.1046/j.1365-246x.1999.00919.x.

7. Červeny V. Seismic ray theory. – Cambridge University Press, 2001.

8. Červeny V., Soares J.E.P. Fresnel volume ray tracing // Geophysics. – 1992. – Vol. 57 (7). – P. 902–915, doi: 10.1190/1.1443303.

9. Červeny V., Molotkov I.A., Psencik I. Ray theory in seismology. – Charles University Press, 1977.

10. Dahlen F.A., Hung S.-H., Nolet G. Fréchet kernels for finite-frequency traveltimes – I. Theory // Geophysical Journal International. – 2000. – Vol. 141 (1). – P. 157–174, doi: 10.1046/j.1365-246X.2000.00070.x.

11. Gadylshin K., Protasov M. Construction of exact frequency-dependent rays with the known solution of the Helmholtz equation // Computational Methods and Programming: New Computational Technologies. – 2015. – Vol. 4. – P. 586–594.

12. Kravtsov Y.A., Orlov Y.I. Geometrical optics of inhomogeneous media [in Russian]. – Nauka, Moscow, 1980.

13. Lomax A. The wavelength-smoothing method for approximating broad-band wave propagation through complicated velocity structures // Geophysical Journal International. – 1994. – Vol. 117 (2). – P. 313–334, doi: 10.1111/j.1365-246X.1994.tb03935.x.

14. Lucio P.S., Lambaré G., Hanyga A. 3D multivalued travel time and amplitude maps // Pure and Applied Geophysics. – 1996. – Vol. 148. – P. 449–479, doi: 10.1007/BF00874575.

15. Marquering H., Dahlen F.A., Nolet G. Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox // Geophysical Journal International. – 1999. – Vol. 137 (3). – P. 805–815, doi: 10.1046/j.1365-246x.1999.00837.x.

16. Neklyudov D.A., Protasov M.I. Simulation of traveltimes and acoustic wave fields by the ray method with approximation of the propagation of a broadband signal as applied to seismic problems // Russian Journal of Geophysical technologies. – 2021. – Vol. 3. – P. 4–17, doi: 10.18303/10.18303/2619-1563-2021-3-4.

17. Protasov M., Gadylshin K. Computational method for exact frequency-dependent rays on the basis of the solution of the Helmholtz equation // Geophysical Journal International. – 2017. – Vol. 210 (1). – P. 525–533, doi: 10.1093/gji/ggx188.

18. Vasco D.W., Nihei K. Broad-band trajectory mechanics // Geophysical Journal International. – 2019. – Vol. 216 (2), 745–759, doi: 10.1093/gji/ggy435.

19. Vasco D.W., Peterson J. E., Majer E.L. Beyond ray tomography: Wavepaths and Fresnel volumes // Geophysics. – 1995. – Vol. 60 (6). – P. 1790–1804, doi: 10.1190/1.1443912.

20. Yarman C.E., Cheng X., Osypov K., Nichols D., Protasov M. Band-limited ray tracing // Geophysical Prospecting. – 2013. – Vol. 61 (6). – P. 1194–1205, doi: 10.1111/1365-2478.12055.


Review

For citations:


Neklyudov D.A., Protasov M.I. 3D Lomax rays and its application for acoustic wavefield simulation in complex media. Russian Journal of Geophysical Technologies. 2023;(2):56-71. (In Russ.) https://doi.org/10.18303/2619-1563-2023-2-56

Views: 246


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)