Preview

Russian Journal of Geophysical Technologies

Advanced search

Separation of signal and harmonics in non-explosive seismic prospecting with amplitude and nonlinear frequency-modulated signals

https://doi.org/10.18303/2619-1563-2023-3-69

Abstract

When vibroseis oscillations are excited, along with the main signal, harmonics are generated. They travel into the Earth and, like the main signal, interact with the target reflectors. Harmonics have a wider than that of the main signal frequency band, so they can be used to increase the resolution of the seismic data. To do this, the signal-related data should be separated from the harmonic-related data. This problem can be successfully solved by the previously proposed optimization recursive filtering algorithm, which, however, was developed only for linearly frequency-modulated signals. In this work, the algorithm is generalized to the case of amplitude modulation and nonlinear frequency modulation. Examples of application of the technique to increase the resolution of real vibroseis data are given.

About the Authors

M. S. Denisov
GEOLAB Ltd
Ordzhonikidze Str., 12/4, Moscow, 119071
Russian Federation


A. A. Zykov
GEOLAB Ltd
Ordzhonikidze Str., 12/4, Moscow, 119071
Russian Federation


References

1. Arkhipov A.A., Kobzarev G.Y., Khromova I.Y. Theoretical basis and usage practice of a new generation seismic spectrum extension technology «nSeis» // Geofizika. – 2021. – Vol. 4. – P. 71–80.

2. Denisov M.S., Egorov A.A. Constructing a model of vibroseis signal complicated by harmonics // Russian Journal of Geophysical Technologies. – 2019a. – Vol. 1. – P. 72–83, doi: 10.18303/2619-1563-2019-1-72.

3. Denisov M.S., Egorov A.A. Optimization-based recursive filtering for Vibroseis harmonic noise elimination // Russian Journal of Geophysical Technologies. – 2019b. – Vol. 2. – P. 23–53, doi: 10.18303/2619-1563-2019-2-23.

4. Denisov M.S., Egorov A.A., Shneerson M.B. Optimization-based recursive filtering for separation of signal from harmonics in Vibroseis // Geophysical Prospecting. – 2021. – Vol. 69 (4). – P. 779–798, doi: 10.1111/1365-2478.13084.

5. Denisov M.S., Zykov A.A. Study of properties of real Vibroseis signals contaminated by harmonic noise // Russian Journal of Geophysical Technologies. – 2022. – Vol. 1. – P. 30–48, doi: 10.18303/2619-1563-2022-1-30.

6. Denisov M.S., Zykov A.A. Modeling of harmonics of amplitude and nonlinear frequency-modulated signals // Russian Journal of Geophysical Technologies. – 2023. – Vol. 3. – P. 58–68, doi: 10.18303/2619-1563-2023-3-58.

7. Fedoruk M.V. Method of pass. – Nauka, Moscow, 1977. – 368 p.

8. Goldin S.V. Linear transformations of seismic signals. – Nedra, Moscow, 1974. – 352 p.

9. Güreli O. Use of vibrator harmonics as a sweep signal // Journal of seismic exploration. – 2021. – Vol. 30 (6). – P. 505–528.

10. Liu D., Li X., Wang W., Wang X., Shi Z., Chen W. Eliminating harmonic noise in vibroseis data through sparsity-promoted waveform modeling // Geophysics. – 2022. – Vol. 87 (3) – P. V183–V191, doi: 10.1190/geo2021-0448.1.

11. Popov M.M. Expanding the spectrum by extrapolation: application, verification, features of the results and data requirements // Geomodel 2023. Expanded abstracts. – Gelendzhik, 2023. – P. 161-164.

12. Rabiner L., Gold B. Theory and application of digital signal processing. – Mir, Moscow, 1978. – 848 p.

13. Tellier N., Ollivrin G. Low-frequency Vibroseis: current achievements and the road ahead? // First Break. – 2019. – Vol. 37 (1). – P. 49–54, doi: 10.3997/1365-2397.n0011.

14. Vasilenko G.I., Taratorin А.М. Reconstruction of images. – Radio and Communication, Moscow, 1986. – 304 p.

15. Vedanti N., Gupta L., Singh V., Vadapalli U., Naik R.T.B., Vasudevan G. Problems with the standard vibroseis deconvolution: some practical solutions // Exploration Geophysics. – 2021. – Vol. 52 (3). – P. 308–320, doi: 10.1080/08123985.2020.1825913.

16. Vedernikov G.V., Maksimov L.A., Zharkov A.V. Study of multiple harmonics of vibroseis signals // Geofizika. –Special Issue to 30th Anniversary of “Sibneftegeofizika”. – 2001. – P. 33–38.

17. Wang H., Chen X., Zhou Y., Chen J., Chen W. Harmonic noise suppression based on the classification of adaptive learning dictionary // CPS/SEG International Geophysical Conference. Expanded Abstracts. – 2018. – P. 449–452, doi: 10.1190/IGC2018-110.

18. Yagudin I.R., Gafarov R.M., Siraev I.A., Akhtyamov R.A. Study of nonlinear transformations on the quality of field data in vibration seismic exploration // Geofizika. – 2022. – Vol. 4. – P. 58–63.

19. Zhang R., Castagna J. Seismic sparse-layer reflectivity inversion using basis pursuit decomposition // Geophysics. – 2011. – Vol. 76 (6) – P. R147–R158, doi: 10.1190/geo2011-0103.1.

20. Zhukov A.P., Korotkov I.P., Tishchenko A.I. Adaptive technologies of vibration seismic exploration. Part I // Instruments and Systems of Exploration Geophysics. – 2021. – Vol. 1 (68). – P. 32–47.


Review

For citations:


Denisov M.S., Zykov A.A. Separation of signal and harmonics in non-explosive seismic prospecting with amplitude and nonlinear frequency-modulated signals. Russian Journal of Geophysical Technologies. 2023;(3):69-84. (In Russ.) https://doi.org/10.18303/2619-1563-2023-3-69

Views: 200


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)