Krylov and rational Krylov methods of numerical solution of some problems of computational geophysics
https://doi.org/10.18303/2619-1563-2024-1-29
Abstract
The solutions of many spatially discretized problems, related with computational geophysics, are presented as 𝑢 = 𝑓(𝐴)𝜑, where 𝐴 ∈ 𝑹𝑁×𝑁, 𝜑 ∈ 𝑹𝑁, 𝑓 is a function. We consider approximations to 𝑢 on the basis of Galerkin approach for polynomial and rational Krylov subspaces. We describe the corresponding computational methods – the ones of Lanczos and rational Arnoldi, and also their application to solving some problems of computational geophysics (in the area of electrologging, thermal logging, electrical prospecting). The aim of this review paper is to instruct the reader to apply the methods described here to his applied problems.
About the Author
L. A. KnizhnermanRussian Federation
8, Gubkin Str., Moscow, 119333.
References
1. Baglama J., Calvetti D., Reichel L. Fast Leja points // ETNA (electronic only). 1998. Vol. 7. P. 124–140. https://www.emis.de/journals/ETNA/vol.7.1998/pp124-140.dir/pp124-140.pdf.
2. Bateman H., Magnus W., Oberhettinger F., Tricomi F.G., Bertin D., Fulks W.B., Harvey A.R., Thomsen D.L. Jr., Weber M.A., Whitney E.L., Erdélyi А. Higher transcendental functions. Vol. 2. McGraw Hill Book Company, N.Y., 1953.
3. Beckermann B., Reichel L. Error estimates and evaluation of matrix functions via the Faber transform // SIAM Journal on Numerical Analysis. 2009. Vol. 47 (5). P. 3849–3883. doi: 10.1137/080741744.
4. Druskin V.L., Knizhnerman L.A. Spectral differential-difference method for numeric solution of threedimensional nonstationary problems of electric prospecting // Izvestiya. Earth Physics. 1988. Vol. 24 (8), P. 641– 648.
5. Druskin V.L., Knizhnerman L.A. Two polynomial methods of calculating functions of symmetric matrices // USSR Computational Mathematics and Mathematical Physics. 1989. Vol. 29 (6). P. 112–121. doi:10.1016/S00415553(89)80020-5.
6. Druskin V.L., Knizhnerman L.A. Error bounds in the simple Lanczos procedure for computing functions of symmetric matrices and eigenvalues // USSR Computational Mathematics and Mathematical Physics. 1991. Vol. 31, No. 7. P. 20–30.
7. Druskin V., Knizhnerman L. The Lanczos optimization of a splitting-up method to solve homogeneous evolutionary equations // Journal of Computational and Applied Mathematics. 1992. Vol. 42 (2). P. 221–231. doi: 10.1016/0377-0427(92)90076-A.
8. Druskin V., Knizhnerman L. Extended Krylov subspaces: approximation of the matrix square root and related functions // SIAM Journal on Matrix Analysis and Application. 1998. Vol. 19 (3). P. 755–771. doi: 10.1137/S0895479895292400.
9. Druskin V.L., Knizhnerman L.A., Ping Lee. New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry // Geophysics. 1999. Vol. 64 (3). P. 701–706. doi: 10.1190/1.1444579.
10. Druskin V., Knizhnerman L., Zaslavsky M. Solution of large scale evolutionary problems using rational Krylov subspaces with optimized shifts // SIAM Journal on Scientific Computing. 2009. Vol. 31 (5). P. 3760–3780. doi: 10.1137/080742403.
11. Druskin V., Lieberman C., Zaslavsky M. On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems // SIAM Journal on Scientific Computing. 2010. Vol. 32. P. 2485–2496. doi: 10.1137/090774082.
12. Gončar A.A. Zolotarev problems connected with rational functions // Mathematics of the USSR-Sbornik.1969. Vol. 7 (4). P. 623–635. doi: 10.1070/SM1969v007n04ABEH001107.
13. Gončar A.A. On the speed of rational approximation of some analytic functions // Mathematics of the USSRSbornik. 1978. Vol. 34 (2). P. 131–145. doi: 10.1070/sm1978v034n02abeh001152.
14. Greenbaum A. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences // Linear Algebra and its Applications. 1989. Vol. 113. P. 7–63. doi: 10.1016/0024-3795(89)90285-1.
15. Knizhnerman L., Druskin V., Zaslavsky M. On optimal convergence rate of the Rational Krylov Subspace Reduction for electromagnetic problems in unbounded domains // SIAM Journal on Numerical Analysis. 2009. Vol. 47 (2). P. 953–971. doi: 10.1137/080715159.
16. Le Bailly B., Thiran J.P. Optimal rational functions for the generalized Zolotarev problem in the complex plane // SIAM Journal on Numerical Analysis. 2000. Vol. 38 (5). P. 1409–1424. doi: 10.1137/S003614299936068.
17. Leja F. Sur certaines suits liées aux ensemble plan et leur application à la représentation conforme // Annales Polonici Mathematici. 1957. Vol. 4 (1). P. 8–13.
18. Oseledets I.V. Lower bounds for separable approximations of the Hilbert kernel // Sbornik: Mathematics. 2007. Vol. 198, No. 3. P. 425–432. doi: 10.1070/SM2007v198n03ABEH003842.
19. Parlett B.N. The symmetric eigenvalue problems. Philadelphia, SIAM, 1998.
20. Paszkowski S. Computational applications of Chebyshev polynomials and series [in Russian]. Nauka, Moscow, 1983. 384 p.
21. Ruhe A. The rational Krylov algorithm for nonsymmetric eigenvalue problems. III: Complex shifts for real matrices // BIT Numerical Mathematics. 1994. Vol. 34. P. 165–176. doi: 10.1007/BF01935024.
22. Saff E.B., Totik V. Logarithmic potentials with external fields. Springer Berlin, Heidelberg, 1997. 505 p. doi: 10.1007/978-3-662-03329-6.
23. Simoncini V. A new iterative method for solving large-scale Lyapunov matrix equations // SIAM Journal on Science Computing. 2007. Vol. 29 (3). P. 1268–1288. doi: 10.1137/06066120X.
24. Tyrtyshnikov E.E. Mosaic-skeleton approximations // Calcolo. 1996. Vol. 33. P. 47–57. doi: 10.1007/BF02575706.
Review
For citations:
Knizhnerman L.A. Krylov and rational Krylov methods of numerical solution of some problems of computational geophysics. Russian Journal of Geophysical Technologies. 2024;(1):29-46. (In Russ.) https://doi.org/10.18303/2619-1563-2024-1-29