Preview

Геофизические технологии

Расширенный поиск

Веерный механизм создания динамических разломов с высокими фильтрационно-емкостными свойствами на сейсмогенных глубинах земной коры

https://doi.org/10.18303/2619-1563-2024-1-118

Аннотация

Обсуждаются основы недавно обнаруженного веерного механизма разрушения горных пород на сейсмогенных глубинах земной коры, создающего разломы с высокими фильтрационно-емкостными свойствами. Феноменальной особенностью веерного механизма является способность создавать новые разломы в прочных горных породах при аномально низких сдвиговых напряжениях и обеспечивать высокие скорости роста разломов вплоть до сверхзвуковых, что делает его самым опасным механизмом землетрясений. Показано, что данный механизм может быть активизирован искусственно для различных целей, например, при создании глубинных коллекторов для петротеплоэлектростанций и для увеличения нефтеотдачи трудноизвлекаемых запасов.

Об авторе

Б. Г. Тарасов
Научно-исследовательский институт горной геомеханики и маркшейдерского дела – межотраслевой научный центр «ВНИМИ»
Россия

ТАРАСОВ Борис Григорьевич – доктор технических наук, главный научный сотрудник ВНИМИ,

199106, Санкт-Петербург, 22-я линия В.О., 3, корп. 1.

Стаж работы в геомеханике 48 лет:

-Профессор Ленинградского горного института (1992–1999),

-Профессор Западного Австралийского университета (2000–2018),

-Профессор Дальневосточного федерального университета (2019–2021)

-Руководил научным центром «Геотест» (1992–1999) и лабораторией геомеханики (2003–2018).



Список литературы

1. Гнатусь Н.А., Хуторской М.Д. Перспективы извлечения и использования тепла «сухих горных пород» – петротермальная энергетика России // Вестник РУДН, серия Экология и безопасность жизнедеятельности. 2010. № 4. C. 29–40.

2. Дядькин Ю.Д. Теплообмен в глубоких скважинах и зонах фильтрации при извлечении тепла сухих горных пород. Л.: Наука, 1974. 38 c.

3. Дядькин Ю.Д. Разработка геотермальных месторождений. М.: Недра, 1989. 228 с.

4. Киссин И.Г. Флюиды в земной коре: геофизические и тектонические аспекты. М.: Наука, 2015. 328 c.

5. Кочарян Г.Г. Геомеханика разломов. М.: ГЕОС, 2016. 424 c.

6. Петухов И.М., Линьков А.М. Механика горных ударов и выбросов. М.: Недра, 1983. 279 c.

7. Попков В.И. Разломы земной коры: не только каналы миграции, но и зоны аккумуляции нефти и газа // Геология, география и глобальная энергия. 2012. № 3 (46). С. 23–28.

8. Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука, 2003. 270 с.

9. Ставрогин А.Н., Протосеня А.Г. Прочность горных пород и устойчивость выработок на больших глубинах. М.: Недра, 1985. 271 с.

10. Ставрогин А.Н., Тарасов Б.Г. Экспериментальная физика и механика горных пород. СПб.: Наука, 2001. 343 с.

11. Христианович С.А. Исследования механизма гидравлического разрыва пласта // Труды Института геологии и разработки горючих ископаемых. Т. 2: Материалы по разработке нефтяных и газовых месторождений. М., 1960. С. 159–165.

12. Abercrombie R.E., Rice J.R. Can observations of earthquake scaling constrain slip weakening? // Geophysical Journal International. 2005. Vol. 162. P. 406–424. doi: 10.1111/j.1365-246X.2005.02579.x.

13. Albaric J., Déverchère J., Petit C., Perrot J., Le Gall B. Crustal rheology and depth distribution of earthquakes: Insights from the central and southern East African Rift System // Tectonophysics. 2009. Vol. 468. P. 28–41. doi: 10.1016/j.tecto.2008.05.021.

14. Archuleta R.J. A faulting model for the 1979 Imperial Valley earthquake // Journal of Geophysical Research: Solid Earth. 1984. Vol. 89. P. 4559–4585. doi: 10.1029/JB089iB06p04559.

15. Ben-David O., Rubinstein S.M., Fineberg J. Slip-stick and the evolution of frictional strength // Nature. 2010. Vol. 463. P. 76–79. doi: 10.1038/nature08676.

16. Bizzarri A., Spudich P. Effects of supershear rupture speed on the high-frequency content of S waves investigated using spontaneous dynamic rupture models and isochrone theory // Journal of Geophysical Research: Solid Earth. 2008. Vol. 113. B05304. doi: 10.1029/2007JB005146.

17. Bouchon M., Bouin M., Karabulut H., Toksoz M.N., Dietrich M., Rosakis A.J. How fast is rupture during an earthquake? New insights from the 1999 Turkey earthquake // Geophysical Research Letters. 2001. Vol. 28. P. 2723–2726. doi: 10.1029/2001GL013112.

18. Broberg K.B. Cracks and fracture. Academic Press, San Diego, 1999. doi:10.1016/B978-0-12-134130-5.X5000-4.

19. Brown S.R. Frictional heating on faults: Stable sliding versus stick slip // Journal of Geophysical Research: Solid Earth. 1998. Vol. 103. P. 7413–7420. doi: 10.1029/98JB00200.

20. Brace W.F., Byerlee J.D. Stick-slip as a mechanism for earthquakes // Science. 1966. Vol. 153. P. 990–992. doi: 10.1126/science.153.3739.990.

21. Brace W.F., Kohlstedt D. Limits on lithospheric stress imposed by laboratory experiments // Journal of Geophysical Research: Solid Earth. 1980. Vol. 85. P. 6248–6252. doi: 10.1029/JB085iB11p06248.

22. Brodsky E.E., Kanamori H. Elastohydrodynamic lubrication of faults // Journal of Geophysical Research: Solid Earth. 2000. Vol. 106. P. 16357–16374. doi: 10.1029/2001JB000430.

23. Byerlee J.D. Friction of rocks // Pure and Applied Geophysics. 1978. Vol. 116. P. 615–626. doi: 10.1007/BF00876528.

24. Cook N.G.W. The failure of rock // International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 1965. Vol. 2. P. 389–403. doi: 10.1016/0148-9062(65)90004-5.

25. Déverchère J., Petit C., Gileva N., Radziminovitch N., Melnikova V., San’kov V. Depth distribution of earthquakes in the Baikal rift system and its implications for the rheology of the lithosphere // Geophysical Journal International. 2001. Vol. 146. P. 714–730. doi: 10.1046/j.0956-540x.2001.1484.484.x.

26. Dieterich J.H. Modeling of rock friction: 1. Experimental results and constitutive equations // Journal of Geophysical Research: Solid Earth. 1979. Vol. 84. P. 2161–2168. doi: 10.1029/JB084iB05p02161.

27. Ellsworth W., Chiaraluce L. Supershear during nucleation of the 2009 M 6.3 L'Aquila, Italy Earthquake // Eos Transactions. AGU. 2009. Vol. 90 (52). Abstract U13B–0068.

28. Fouch M.J. The Yellowstone hotspot: plume or not? // Geology. 2012. Vol. 40. P. 479–480. doi: 10.1130/focus052012.1.

29. Freund L.B. Dynamic fracture mechanics. Cambridge University Press, Cambridge, 1998.

30. Gaucher E., Schoenball M., Heidbach O., Zang A., Fokker P.A., van Wees J.-D., Kohl T. Induced seismicity in geothermal reservoirs: a review of forecasting approaches // Renewable and Sustainable Energy Reviews. 2015. Vol. 52. P. 1473–1490. doi: 10.1016/j.rser.2015.08.026.

31. Gibowicz S.J. Seismicity induced by mining: recent research // Advances in Geophysics. 2009. Vol. 51. P. 1–53. doi: 10.1016/S0065-2687(09)05106-1.

32. Gori M., Rubino V., Rosakis A.J., Lapusta N. Pressure shock fronts formed by ultra-fast shear cracks in viscoelastic materials // Nature Communications. 2018. Vol. 9. 4754. doi: 10.1038/s41467-018-07139-4.

33. Griffith A.A. The phenomena of rupture and flow in solids // Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. 1921. Vol. 221. P. 163–198. doi: 10.1098/rsta.1921.0006.

34. Griffith W.A., Rosakis A., Pollard D.D., Ko C.W. Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures // Geology. 2009. Vol. 37. P. 795–798. doi: 10.1130/G30064A.1.

35. Heaton T.H. Evidence for and implications of self-healing pulses of slip in earthquake rupture // Physics of the Earth and Planetary Interiors. 1990. Vol. 64. P. 1–20. doi: 10.1016/0031-9201(90)90002-F.

36. Horii H., Nemat-Nasser S. Compression-induced micro-crack growth in brittle solids: axial splitting and shear failure // Journal of Geophysical Research: Solid Earth. 1985. Vol. 90. P. 3105–3125. doi: 10.1029/JB090iB04p03105.

37. King G.C.P., Sammis C.G. The mechanisms of finite brittle strain // Pure and Applied Geophysics. 1992. Vol. 138. P. 611–640. doi: 10.1007/BF00876341.

38. Kirby S. Tectonic stress in the lithosphere: Constraints provided by the experimental deformation of rock // Journal of Geophysical Research: Solid Earth. 1980. Vol. 85. P. 6353–6363. doi: 10.1029/JB085iB11p06353.

39. Kirby S.H., Raleigh C.B. Mechanisms of high-temperature, solid-state flow in minerals and ceramics and their bearing on the creep behaviour of the mantle // Tectonophysics. 1973. Vol. 19. P. 165–194. doi: 10.1016/00401951(73)90038-3.

40. Kohlstedt D.L., Evans B., Mackwell S.J. Strength of the lithosphere: constraints imposed by laboratory experiments // Journal of Geophysical Research: Solid Earth. 1995. Vol. 100. P. 17589–17602. doi: 10.1029/95JB01460.

41. Koplos J., Tuccillo M.E., Ranalli B. Hydraulic fracturing overview: How, where, and its role in oil and gas // Journal American Water Works Association. 2014. Vol. 106. P. 38–56. doi: 10.5942/jawwa.2014.106.0153.

42. Lachenbruch A.H. Frictional heating, fluid pressure, and the resistance to fault motion // Journal of Geophysical Research: Solid Earth. 1980. Vol. 85. P. 6097–6112. doi: 10.1029/JB085iB11p06097.

43. Lachenbruch A.H., Sass J.H. Heat flow and energetic of the San Andreas fault zone // Journal of Geophysical Research: Solid Earth. 1980. Vol. 85. P. 6185–6222. doi: 10.1029/JB085iB11p06185.

44. Leonard T., Liu L. The role of a mantle plume in the formation of Yellowstone volcanism // Geophysical Research Letters. 2016. Vol. 43. P. 1132–1139. doi: 10.1002/2015GL067131.

45. Lu X., Lapusta N., Rosakis A.J. Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes // Proceedings of the National Academy of Science USA. 2007. Vol. 104. P. 18931–18936. doi: 10.1073/pnas.070426810.

46. Lu X., Rosakis A.J., Lapusta N. Rupture modes in laboratory earthquakes: Effect of fault prestress and nucleation condition. Journal of Geophysical Research: Solid Earth. 2010. Vol 115. B12302. doi: 10.1029/2009JB006833.

47. Lund J.W., Freeston D.H. World-wide direct uses of geothermal energy 2000 // Geothermics. 2000. Vol. 30. P. 29–68. doi: 10.1016/S0375-6505(00)00044-4.

48. Maggi A., Jackson J.A., McKenzie D., Priestley K. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere // Geology. 2000. Vol. 28. P. 495–498. doi: 10.1130/00917613(2000)28<495:EFDEET>2.0.CO;2.

49. McGarr A., Simpson D., Seeber L. Case histories of induced and triggered seismicity // International Geophysics. 2002. Vol. 81, Part A. P. 647–661. doi: 10.1016/S0074-6142(02)80243-1.

50. McGarr A., Pollard D., Gay N.C., Ortlepp W.D. Observations and analysis of structures in exhumed mineinduced faults // U.S. Geological Survey Open File Report. 1979. No. 79–1239. P.101–120.

51. McKenzie D., Brune J. Melting on fault planes during large earthquakes // Geophysical Journal of the Royal Astronomical Society. 1972. Vol. 29. P. 65–78. doi: 10.1111/j.1365-246X.1972.tb06152.x.

52. Melosh H.J. Dynamical weakening of faults by acoustic fluidization // Nature. 1996. Vol. 379. P. 601–606. doi: 10.1038/379601a0.

53. Needleman A. An analysis of intersonic crack growth under shear loading // Journal of Applied Mechanics. 1999. Vol. 66. P. 847–857. doi: 10.1115/1.2791788.

54. Ngo D., Huang Y., Rosakis A., Griffith W.A., Pollard D. Off-fault tensile cracks: A link between geological fault observations, lab experiments, and dynamic rupture models // Journal of Geophysical Research: Solid Earth. 2012. Vol. 117. B01307. doi: 10.1029/2011JB008577.

55. Noda H., Dunham E.M., Rice J.R. Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels // Journal of Geophysical Research: Solid Earth. 2009. Vol. 114. B07302. doi: 10.1029/2008JB006143.

56. Ohnaka M., Shen L.-F. Scaling of the shear rupture process from nucleation to dynamic propagation: Implications of geometric irregularity of the rupturing surface // Journal of Geophysical Research: Solid Earth. 1999. Vol. 104 (B1). P. 817–844. doi: 10.1029/1998JB900007.

57. Ortlepp W.D. Rock fracture and rockbursts. The South African Institute of Mining and Metallurgy, Johannesburg, 1997. 98 p.

58. Ortlepp W.D., Armstrong R., Ryder J.A., O’Connor D. Fundamental study of micro-fracturing on the slip surface of mine-induced dynamic brittle shear zones // Proceedings of the 6th International symposium on Rockburst and Seismicity in Mines / Potvin Y., Hudyma M. (Eds.). Australian Centre for Geomechanics, Perth, 2005. P. 229– 237. doi: 10.36487/ACG_repo/574_20.

59. Otsuki K., Dilov T. Evolution of hierarchical self-similar geometry of experimental fault zones: Implications for seismic nucleation and earthquake size // Journal of Geophysical Research: Solid Earth. 2005. Vol. 110. B03303. doi: 10.1029/2004JB003359.

60. Peng S., Johnson A.M. Crack growth and faulting in cylindrical specimens of Chelmsford granite // International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstract. 1972. Vol. 9. P. 37–86. doi: 10.1016/0148-9062(72)90050-2.

61. Perrin G., Rice J.R., Zheng G. Self‐healing slip pulse on a frictional surface // Journal of the Mechanics and Physics of Solids. 1995. Vol. 43. P. 1461–1495. doi: 10.1016/0022-5096(95)00036-I.

62. Reches Z., Lockner D.A. Nucleation and growth of faults in brittle rocks // Journal of Geophysical Research: Solid Earth. 1994. Vol. 99. P. 18159–18173. doi: 10.1029/94JB00115.

63. Rice J.R. New perspectives on crack and fault dynamics. Springer, Dordrecht,2001. doi: 10.1007/0-306-469561_1.

64. Rice J.R. Heating and weakening of faults during earthquake slip // Journal of Geophysical Research: Solid Earth. 2006. Vol. 111. B05311. doi: 10.1029/2005JB004006.

65. Rosakis A.J., Xia K., Lykotrafitis G., Kanamori H. Dynamic shear rupture in frictional interfaces: speeds, directionality, and modes // Treatise on Geophysics / Schubert G. (Ed.). Elsevier, Amsterdam, 2007. Vol. 4. P. 183–213. doi: 10.1016/B978-0-444-53802-4.00072-5.

66. Rubino V., Rosakis A.J., Lapusta N. Understanding dynamic friction through spontaneously evolving laboratory earthquakes // Nature Communications. 2017. Vol. 8. 15991. doi: 10.1038/ncomms15991.

67. Rubinstein S.M., Cohen G., Fineberg J. Detachment fronts and the onset of dynamic friction // Nature. 2004. Vol. 430. P. 1005–1009. doi: 10.1038/nature02830.

68. Ruina A. Slip instability and state variable friction laws // Journal of Geophysical Research: Solid Earth. 1983. Vol. 88. P. 10359–10370. doi: 10.1029/JB088iB12p10359.

69. Segall P., Pollard D.D. The mechanics of discontinuous faults // Journal of Geophysical Research: Solid Earth. 1980. Vol. 85. P. 4337–4250. doi: 10.1029/JB085iB08p04337.

70. Scholz C.H. Earthquakes and friction laws // Nature. 1998. Vol. 391. P. 37–42. doi: 10.1038/34097.

71. Scholz C.H. The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge, 2002. Sibson R.H. Interactions between temperature and fluid pressure during earthquake faulting–A mechanism for partial or total stress relief // Nature. 1973. Vol. 243. P. 66–68. doi: 10.1038/physci243066a0.

72. Silva V., Yepes-Estrada C., Weatherill G. Part Three: Hazard specific risk assessment – earthquake. In book: Words into action guidelines national disaster risk assessment // Words into Action Guidelines National Disaster Risk Assessment / Safaie S. (Ed.). United Nations International Strategy for Disaster Risk Reduction, Geneva, Switzerland, 2017.

73. Smith R.B., Jordan M., Steinberger B., Puskas C.M., Farrell J., Waite G.P., Husen S., Chang W.-L., O'Connell R. Geodynamics of the Yellowstone hotspot and mantle plume: Seismic and GPS imaging, kinematics, and mantle flow // Journal of Volcanology and Geothermal Research. 2009. Vol. 188. P. 26–56. doi: 10.1016/j.jvolgeores.2009.08.020.

74. Suckale J. Induced seismicity in hydrocarbon fields // Advances in Geophysics. 2009. Vol. 51. P. 55–106. doi: 10.1016/S0065-2687(09)05107-3.

75. Tarasov B.G. Intersonic shear rupture mechanism // International Journal of Rock Mechanics and Mining Science. 2008. Vol. 45. P. 914–928. doi: 10.1016/j.ijrmms.2007.10.002.

76. Tarasov B.G. Superbrittleness of rocks at high confining pressure // Deep Mining 2010: Proceedings of the Fifth International Seminar on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2010. P. 119–133. doi: 10.36487/ACG_repo/1074_08.

77. Tarasov B.G. Universal scale of brittleness for rocks failed at compression // Proceedings of the 13th International Conference of the International Association for Computer Methods and Advances in Geomechanics. Melbourne, Australia, 2011. Vol. 2. P. 669–673.

78. Tarasov B.G. Depth distribution of lithospheric strength determined by the self-unbalancing shear rupture mechanism // Proceedings of the ISRM International Symposium – Eurock 2013. Wroclaw, Poland, 2013. P.165– 170. doi: 10.1201/b15683-25.

79. Tarasov B.G. Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression // Tectonophysics. 2014. Vol. 621. P. 69–84. doi: 10.1016/j.tecto.2014.02.004.

80. Tarasov B.G. Shear fractures of extreme dynamics // Rock Mechanics and Rock Engineering. 2016. Vol. 49. P. 3999–4021. doi: 10.1007/s00603-016-1069-y.

81. Tarasov B.G. Shear ruptures of extreme dynamics in laboratory and natural conditions // Deep Mining 2017: Proceedings of the Eighth Conference on Deep and High Stress Mining. Australian Centre for Geomechanics, Perth, 2017. P. 3–50. doi: 10.36487/ACG_rep/1704_0.1_Tarasov.

82. Tarasov B.G. Dramatic weakening and embrittlement of intact hard rocks in the earth’s crust at seismic depths as a cause of shallow earthquakes // Earth crust / Nawaz M., Sattar F., Kundu S.N. (Eds.). IntechOpen, 2019. doi: 10.5772/intechopen.85413.

83. Tarasov B.G. New physics of supersonic ruptures // Deep Underground Science and Engineering. 2023a. Vol. 2. P. 207–244. doi: 10.1002/dug2.12050.

84. Tarasov B.G. Fan-hinged shear instead of frictional stick-slip as the main and most dangerous mechanism of natural, induced and volcanic earthquakes in the earth’s crust // Deep Underground Science and Engineering. 2023b. Vol. 2. P. 305–336. doi: 10.1002/dug2.12052.

85. Tarasov B.G., Ortlepp W.D. Shock loading-unloading mechanism in rockburst shear fractures in quartzite causing genesis of polyhedral sub-particles in the fault gouge // Proceeding of the Fourth International Seminar on Deep and High Stress Mining, Australia, 2007. P. 183–192. doi: 10.36487/ACG_repo/711_12.

86. Tarasov B.G., Randolph M.F. Frictionless shear at great depth and other paradoxes of hard rocks // International Journal of Rock Mechanics and Mining Science. 2008. Vol. 45. P. 316–328. doi:10.1016/j.ijrmms.2007.06.001.

87. Tarasov B.G., Randolph M.F. Superbrittleness of rocks and earthquake activity // International Journal of Rock Mechanics and Mining Science. 2011. Vol. 48. P. 888–898. doi: 10.1016/j.ijrmms.2011.06.013.

88. Tarasov B.G., Guzev M.A. New insight into the nature of size dependence and the lower limit of rock strength // Proceeding of the 8th International Symposium on Rockbursts and Seismicity in Mines. St. Petersburg, Moscow, 2013. Vol. 1. P. 31–40.

89. Tarasov B.G., Potvin Y. Universal criteria for rock brittleness estimation under triaxial compression // International Journal of Rock Mechanics and Mining Science. 2013. Vol. 59. P. 57–69. doi:10.1016/j.ijrmms.2012.12.011.

90. Tarasov B.G., Randolph M.F. Improved concept of lithospheric strength and earthquake activity at shallow depths based upon the fan-head dynamic shear rupture mechanism // Tectonophysics. 2016. Vol. 667. P. 124– 143. doi: 10.1016/j.tecto.2015.11.016.

91. Tarasov B.G., Sadovskii V.M. Modeling of fan formation in a shear rupture head on the basis of singular solutions of plane elasticity // AIP Conference Proceedings. 2016. Vol. 1773. P. 080006-1–080006-7. doi: 10.1063/1.4964990.

92. Tarasov B.G., Stacey T.R. Features of the energy balance and fragmentation mechanisms at spontaneous failure of class I and class II rock // Rock Mechanics and Rock Engineering. 2017. Vol. 50. P. 2563–2584 doi: 10.1007/s00603-017-1251-x.

93. Tarasov B.G., Sadovskii V.M., Sadovskaya O.B. Analysis of fan waves in a laboratory model simulating the propagation of shear ruptures in rocks // Computational Mechanics of Solids. 2016. Vol. 9 (1). P. 38–51. doi: 10.7242/1999-6691/2016.9.1.4.

94. Tarasov B.G., Guzev M.A., Sadovskii V.M., Cassidy M.J. Modelling the mechanical structure of extreme shear ruptures with friction approaching zero generated in brittle materials // International Journal of Fracture. 2017. Vol. 207. P. 87–97. doi: 10.1007/s10704-017-0223-1.

95. Xia K., Rosakis A.J., Kanamori H. Laboratory earthquakes: the sub-Raleigh-to supershear rupture transition // Science. 2004. Vol. 303. P. 1859–1861. doi: 10.1126/science.1094022.

96. Zheng G., Rice J.R. Conditions under which velocity‐weakening friction allows a self‐healing versus a crack-like mode of rupture // Bulletin of the Seismological Society of America. 1998. Vol. 88. P. 1466–1483. doi: 10.1785/BSSA0880061466.


Рецензия

Для цитирования:


Тарасов Б.Г. Веерный механизм создания динамических разломов с высокими фильтрационно-емкостными свойствами на сейсмогенных глубинах земной коры. Геофизические технологии. 2024;(1):118-186. https://doi.org/10.18303/2619-1563-2024-1-118

For citation:


Tarasov B.G. Fan mechanism creating dynamic ruptures with high permeability at seismogenic depths of the Earth’s crust. Russian Journal of Geophysical Technologies. 2024;(1):118-186. (In Russ.) https://doi.org/10.18303/2619-1563-2024-1-118

Просмотров: 221


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)