Preview

Russian Journal of Geophysical Technologies

Advanced search

Seismic shear-wave extraction from ambient seismic noise records at the Tashtagol iron using the passive interferometry method

https://doi.org/10.18303/2619-1563-2024-3-65

Abstract

In this paper, the passive interferometry method was applied for the first time to seismic noise data recorded at the Tashtagol iron ore deposit. The passive interferometry method is based on the analysis of cross-correlation functions of seismic noise. Continuous seismic records from one day at six seismic stations formed the data set used in this analysis. We have successfully identified shear seismic waves propagating between seismic stations on the obtained cross-correlations. The results demonstrate the potential of using ambient seismic noise tomography to study mining data.

About the Authors

Y. M. Berezhnev
Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS; Novosibirsk State University
Russian Federation

Yaroslav M. Berezhnev

Koptyug Ave., 3, Novosibirsk, 630090; Pirogova Str., 1, Novosibirsk, 630090



N. N. Belovezhets
Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS; Novosibirsk State University
Russian Federation

Nadezhda N. Belovezhets

Koptyug Ave., 3, Novosibirsk, 630090; Pirogova Str., 1, Novosibirsk, 630090



G. D. Rukavishnikov
VNIMI JSC; N.A. Chinakal Institute of Mining SB RAS
Russian Federation

Georgy D. Rukavishnikov

St. Petersburg, 22 Line V.O., 3/1, of. 406, 199106; Krasny Ave, 54, Novosibirsk, 630091



References

1. Bensen G.D., Ritzwoller M.H., Barmin M.P., Levshin A.L., Lin F., Moschetti M.P., Shapiro N.M., Yang Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements // Geophysical Journal International. 2007. Vol. 169 (3). P. 1239–1260. doi:10.1111/j.1365-246X.2007.03374.x.

2. Boué P., Poli P., Roux P., Campillo M., Briand X. Phase velocity tomography of surface waves using ambient noise cross-correlation and array processing // Journal of Geophysical Research. 2014. Vol. 119 (1). P. 519–529. doi:10.1002/2013JB010446.

3. Czarny R., Marcak H., Nakata N., Pilecki Z., Zbigniew I. Monitoring velocity changes caused by underground coal mining using seismic noise // Pure and Applied Geophysics. 2016. Vol. 173. P. 1907–1916. doi:10.1007/s00024-015-1234-3.

4. Eremenko A.A., Mulev S.N., Shtirts V.A. Microseismic monitoring of geodynamic phenomena in rockburst-hazardous mining condition // Journal of Mining Science. 2022. Vol. 58 (1). P. 10–19. doi:10.1134/s1062739122010021.

5. Gavrilov A.G., Shtirts V.A., Rukavishnikov G.D. Modern approaches to control stress-strain state of rock mass using seismic data at the Tashtagol iron mine // Russian Mining Industry. 2024. Vol. 3S. P. 32–36.

6. Lin F., Li D., Clayton R.W., Hollis D. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array // Geophysics. 2013. Vol. 78 (4). P. Q45–Q56. doi:10.1190/geo2012-0453.1.

7. Liu Y., Zhang H., Fang H., Yao H., Gao J. Ambient noise tomography of three-dimensional near-surface shear wave velocity structure around the hydraulic fracturing site using surface microseismic monitoring array // Journal of Applied Geophysics. 2018. Vol. 159. P. 209–217. doi:10.1016/j.jappgeo.2018.08.009.

8. Moreau L., Stehly L., Boué P., Lu Y., Larose E., Campillo M. Improving ambient noise correlation functions with an SVD-based Wiener filter // Geophysical Journal International. 2017. Vol. 211. P. 418–426. doi:10.1093/gji/ggx306.

9. Mulev S.N., Rulavishnikov G.D., Moroz D.I., Pashkova V.I., Moroz N.E. Monitoring of the stress state by seismic and numerical methods at the mines of JSC “Vorkutaugol” // Ugol (Russian Coal Journal). 2022. Vol. 12. P. 88–93. doi:10.18796/0041-5790-2022-12-88-93.

10. Nakata N., Snieder R., Tsuji T., Larner K., Matsuoka T. Shear wave imaging from traffic noise using seismic interferometry by cross-coherence // Geophysics. 2011. Vol. 76 (6). P. SA97–SA106. doi:10.1190/geo2010-0188.1.

11. Olivier G., Brenguier F., Campillo M., Lynch R., Roux P. Body-wave reconstruction from ambient seismic noise correlations in an underground mine // Geophysics. 2015. Vol. 80 (3). P. KS11–KS25. doi:10.1190/geo2014-0299.1.

12. Rukavishnikov G.D., Mulev S.N., Gavrilov A.G. Experience of application and prospects for the development of the GITS seismic monitoring system at the Tashtagolsky iron ore deposit // Russian Mining Industry. 2023. Vol. 1S. P. 90–95. doi:10.30686/1609-9192-2023-S1-90-95.

13. Sabra K., Roux P., Kuperman W. Emergence rate of the time-domain Green’s function from the ambient noise cross-correlation function // Journal of the Acoustical Society of America. 2005. Vol. 118 (6). P. 3524–3531. doi:10.1121/1.2109059.

14. Seats K.S., Lawrence J.F., Prieto G.A. Improved ambient noise correlation functions using Welch′s method // Geophysical Journal International. 2012. Vol. 188 (2). P. 513–523. doi:10.1111/j.1365-246X.2011.05263.x.

15. Shapiro N.M., Campillo M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise // Geophysical Research Letters. 2004. Vol. 31 (7). P. L07614. doi:10.1029/2004GL019491.

16. Shtirts V.A., Koltyshev V.N. Development blocks and the distributions of aftershocks after massive explosions in the conditions of the Tashtagol deposit // Mining Informational and Analytical Bulletin. 2015. Vol. 7. P. 54–59.

17. Snieder R. Coda wave interferometry and the equilibration of energy in elastic media // Physical Review E. 2002. Vol. 66 (4). P 046615. doi:10.1103/PHYSREVE.66.046615.

18. Zhang J., Gerstoft P., Shearer P. High-frequency P-wave seismic noise driven by ocean winds // Geophysical Research Letters. 2009. Vol. 36 (9). P. L09392. doi:10.1029/2009GL037761

19.

20.


Review

For citations:


Berezhnev Y.M., Belovezhets N.N., Rukavishnikov G.D. Seismic shear-wave extraction from ambient seismic noise records at the Tashtagol iron using the passive interferometry method. Russian Journal of Geophysical Technologies. 2024;(3):65-73. (In Russ.) https://doi.org/10.18303/2619-1563-2024-3-65

Views: 145


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)