Preview

Russian Journal of Geophysical Technologies

Advanced search

Estimation of the average Rayleigh surface wave dispersion curve from local profile data using passive interferometry method

https://doi.org/10.18303/2619-1563-2025-3-4

Abstract

In this study, the passive interferometry method was applied for the first time in Russia to 60 hours of

continuous seismic recordings acquired along a local seismic profile with a 50-cm receiver spacing. As a result of applying the method, cross-correlation functions of ambient seismic noise were constructed for all receiver pairs. The all constructed crosscorrelations reveal Rayleigh surface waves propagating between the receivers. The new, Stokwell–Bessel transform based method was then applied to these waves to extract the average dispersion curve of the Rayleigh-wave phase velocity. It has proven effective for use in short receiver spacing and short spreads. The successful retrieval of the dispersion curve demonstrates that noise interferometry can be considered as a viable method for engineering seismic surveys.

About the Authors

Yaroslav M. Berezhnev
Novosibirsk State University
Россия

Pirogova Str., 1, Novosibirsk, 630090



Nadezhda N. Belovezhets
Novosibirsk State University
Россия

Pirogova Str., 1, Novosibirsk, 630090



Petr A. Dergach
Novosibirsk State University; Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS
Россия

Pirogova Str., 1, Novosibirsk, 630090

Koptyug Ave., 3, Novosibirsk, 630090



Alexandr V. Yablokov
Novosibirsk State University; Trofimuk Institute of Petroleum Geology and Geophysics, SB RAS
Россия

Pirogova Str., 1, Novosibirsk, 630090

Koptyug Ave., 3, Novosibirsk, 630090



References

1. Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors // Bulletin of the Earthquake Research Institute. 1957. Vol. 35. P. 415–456.

2. Bensen G.D., Ritzwoller M.H., Barmin M.P., Levshin A.L., Lin F., Moschetti M.P., Shapiro N.M., Yang Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements // Geophysical Journal International. 2007. Vol. 169 (3). P. 1239–1260. doi:10.1111/j.1365-246X.2007.03374.x.

3. Chen X. A systematic and efficient method of computing normal modes for multilayered half‐space // Geophysical Journal International. 1993. Vol. 115 (2). P. 391–409. doi:10.1111/j.1365-246X.1993.tb01194.x.

4. Cheng F., Xia J., Luo Y., Xu Z., Wang L., Shen C., Liu R., Pan Y., Mi B., Hu Y. Multichannel analysis of passive surface waves based on crosscorrelations // Geophysics. 2016. Vol. 81. P. EN57–EN66. doi:10.1190/geo20150505.1.

5. Larose E., Carriere S., Voisin C., Bottelin P., Baillet L., Gueguen P., Walter F., Jongmans D., Guillier B., Garambois S., Gimbert F., Massey C. Environmental seismology: What can we learn on earth surface processes with ambient noise? // Journal of Applied Geophysics. 2015. Vol. 116. P. 62–74. doi: 10.1016/j.jappgeo.2015.02.001.

6. Li C., Yao H., Fang H., Huang X., Wan K., Zhang H., Wang K. 3D near‐surface shear‐wave velocity structure from ambient‐noise tomography and borehole data in the Hefei Urban Area, China // Seismological Research Letters. 2016. Vol. 87. P. 882–892. doi:10.1785/0220150257.

7. Luo Y., Lin J., Yang Y., Wang L., Yang X., Xie J. Joint inversion of active sources and ambient noise for nearsurface structures: A case study in the Balikun Basin, China // Seismological Research Letters. 2018. Vol. 89. P. 2256–2265. doi:10.1785/0220180140.

8. Moschetti M., Ritzwoller M., Lin F., Yang Y. Crustal shear wave velocity structure of the western United States inferred from ambient seismic noise and earthquake data // Journal of Geophysical Research: Solid Earth. 2010. Vol. 115. P. B10306. doi:10.1029/2010JB007448.

9. Pasten C., Saez M., Ruiz S., Leyton F., Salomon J., Poli P. Deep characterization of the Santiago Basin using HVSR and cross-correlation of ambient seismic noise // Engineering Geology. 2016. Vol. 201. P. 57–66. doi: 10.1016/j.enggeo.2015.12.021.

10. Picozzi M., Parolai S., Bindi D., Strollo A. Characterization of shallow geology by high-frequency seismic noise tomography // Geophysical Journal International. 2009. Vol. 176 (1). P. 164–174. doi:10.1111/j.1365246X.2008.03966.x.

11. Sabra K., Roux P., Kuperman W. Emergence rate of the time-domain Green’s function from the ambient noise cross-correlation function //Journal of the Acoustical Society of America. 2005. Vol. 118 (3). P. 3524–3531. doi: 10.1121/1.4809069.

12. Sánchez‐Sesma F.J., Campillo M. Retrieval of the Green’s function from cross correlation: The canonical elastic problem // Bulletin of the Seismological Society of America. 2006. Vol. 96 (3). P. 1182–1191. doi: 10.1785/0120050181.

13. Seats K.S., Lawrence J.F., Prieto G.A. Improved ambient noise correlation functions using Welch′s method // Geophysical Journal International. 2012. Vol. 188 (2). P. 513–523. doi:10.1111/j.1365-246X.2011.05263.x. Shapiro N.M., Campillo M. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise // Geophysical Research Letters. 2004. Vol. 31. P. L07614. doi:10.1029/2004GL019491.

14. Stockwell R.G., Mansinha L., Lowe R.P. Localization of the complex spectrum: The S transform // IEEE Transactions on Signal Processing. 1995. Vol. 44 (4). P. 998–1001. doi:10.1029/2004GL019491.

15. Yao H., van Der Hilst R., Hoop M. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis – I. Phase velocity maps // Geophysical Journal International. 2006. Vol. 166 (2). P. 732–744. doi:10.1111/j.1365-246X.2006.03028.x.

16. Zhang G., Chen X., Yu C., Feng X., Liu Q., Gao L., Song W. A Stockwell-Bessel transform based method for extracting broadband dispersion curve from seismic ambient noise data // Journal of Geophysical Research: Solid Earth. 2025. Vol. 130 (7). P. e2024JB030311. doi:10.1029/2024JB030311.

17. Zheng Y., Shen W., Zhou L., Yang Y., Xie Z., Ritzwoller M.H. Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography // Journal of Geophysical Research: Solid Earth. 2011. Vol. 116. P. B12312. doi:10.1029/2011JB008637.


Review

For citations:


Berezhnev Ya.M., Belovezhets N.N., Dergach P.A., Yablokov A.V. Estimation of the average Rayleigh surface wave dispersion curve from local profile data using passive interferometry method. Russian Journal of Geophysical Technologies. 2025;(3):4–11. (In Russ.) https://doi.org/10.18303/2619-1563-2025-3-4

Views: 63

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)