Preview

Russian Journal of Geophysical Technologies

Advanced search

Amplitude-dependent spectra of the damping of a longitudinal wave in dry and water-saturated sandstone at hydrostatic pressure

https://doi.org/10.18303/2619-1563-2018-1-3

Abstract

Data of experimental study of amplitude dependence of P-wave attenuation in the dry and watersaturated
sandstone under confining pressure of 10 MPa are presented. Measurements were conducted on samples  using the reflection method at a dominant frequency of the initial impulse of 1 MHz in the amplitude range   ~ (0,3 – 2,0)  10-6. P-wave attenuation spectra, 1( , ) P Q f  in the frequency range of 0,52 – 1,42  MHz in a dry and saturated sample have an appearance in the form of relaxation peak which depends on  the strain amplitude. In the saturated sandstone, attenuation is greater and the attenuation peak is shifted  to higher frequencies compared to the dry sandstone. With increasing amplitude, wave attenuation  decreases in dry sandstone by 4,5% and in saturated – by 9%. P-wave velocity practically doesn't depend  on the strain amplitude. The possible mechanism of discrete (intermittent) inelasticity which determines the waveform distortion and exerts influence on wave attenuation spectra is discussed. The received results  have fundamental and applied importance for seismics, acoustics and in Earth sciences.

About the Author

E. I. Mashinskii
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Koptyug Avenue, 3, Novosibirsk, 630090
Russian Federation


References

1. Баранникова С.А., Надежкин М.В., Зуев Л.Б. О локализации пластической деформации при сжатии кристаллов LiF // Физика твердого тела. – 2010. – Т. 52, вып. 7. – С. 1291–1294.

2. Воробьев Е.В., Анпилогова Т.В. Моделирование процесса низкотемпературной деформации металлов // Проблемы прочности. – 2011. – № 1. – С. 109–121.

3. Головин Ю.И., Дуб С.Н., Иволгин В.И., Коренков В.В., Тюрин А.И. Кинетические особенности деформации твердых тел в нано-микрообъемах // Физика твердого тела. – 2005. – Т. 47, вып. 6. – С. 961–973.

4. Машинский Э.И., Кокшаров В.З., Нефедкин Ю.А. Амплитуднозависимые эффекты в диапазоне малых сейсмических деформаций // Геология и геофизика. – 1999. – Т. 40, № 4. – С. 611–618.

5. Машинский Э.И. Амплитудно-зависимые эффекты при распространении продольной сейсмической волны в межскважинном пространстве // Физика Земли. – 2007. – Т. 43, № 8. – С. 683–690.

6. Машинский Э.И. Амплитудно-зависимое затухание продольных и поперечных волн в сухом и насыщенном песчанике под давлением // Геология и геофизика. – 2009. – Т. 50. – С. 950–956.

7. Машинский Э.И., Голиков Н.А. Затухание продольных и поперечных УЗ-волн в частично и полнонасыщенных песчаниках-коллекторах под давлением // Технологии сейсморазведки. – 2012. – № 4. – С. 22–28.

8. Машинский Э.И. Спектры затухания продольных и поперечных волн в песчанике и монокристаллах природного кварца // Технологии сейсморазведки. – 2016. – № 2. – С. 69–75.

9. Песчанская Н.Н., Смирнов Б.И., Шпейзман В.В. Скачкообразная микродеформация наноструктурных металлов // Физика твердого тела. – 2008. – Т. 50, № 5. – С. 815–819.

10. Экономов А.Н. Влияние изменения микроструктуры поликристаллических металлов на их акустические свойства: дисс. … канд. физ.-мат. наук. – М., 2002. – 143 с.

11. Baud P., Vajdova V., Wong T. Shear-enhanced compaction and strain localization: Inelastic deformation and constitutive modeling of four porous sandstones // J. Geophys. Res. – 2006. – Vol. 111 – P. B12401.

12. Derlet P.M., Maaf R. Micro-plasticity and intermittent dislocation activity in a simplified micro-structural model // Modelling and simulation in materials Science and engineering. – 2013. – Vol. 21, No. 3. – P. 035007.

13. Diallo M.S., Prasad M., Appel E. Comparison between experimental results and theoretical predictions for P-wave velocity and attenuation at ultrasonic frequency // Wave Motion. – 2003. – Vol. 37. – P. 1–16.

14. Dvorkin J., Nur A. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms // Geophysics. – 1993. – Vol. 58. – P. 524–533.

15. Dvorkin J., Prasad M., Sakai A., Lavoie D. Elasticity of marine sediments // GRL. – 1999. – Vol. 26. – P. 1781–1784.

16. Dvorkin J., Walls J., Taner T., Derzhi N., Mavko G. Attenuation at Patchy Saturation – A Model // EAGE 65th Conference & Exhibition. – 2003.

17. Gurmani S.F., Jahn S., Brasse H., Schilling F.R. Atomic scale view on partially molten rocks: Molecular dynamics simulations of melt-wetted olivine grain boundaries // J. Geophys. Res. – 2011. – Vol. 116, No. 12. – P. B12209.

18. Jones S.M. Velocity and quality factors of sedimentary rocks at low and high effective pressures // Geophys. J. Int. – 1995. – Vol. 123. – P. 774–780.

19. Liu Chu-ming, Liu Zi-juan, Zhu Xiu-rong, Hu Bi-wen, Wang Rong, Wang Meng-jun. Influence of isochronal heat treatment on damping behavior of AZ61 alloy // J. Cent. South Univ. Technol. – 2007. – Vol. 14, No. 3. – P. 315–

20. Luo S.-N., Swadener J.G., Ma C., Tschauner O. Examining crystallographic orientation dependence of hardness of silica stishovite // Physica. – 2007. – Vol. 399, No. 2. – P. 138–142.

21. Mashinskii E.I. Nonlinear amplitude-frequency characteristics of attenuation in rock under pressure // J. Geophys. Eng. – 2006. – No. 3. – P. 291–306.

22. Mashinskii E.I. Amplitude-frequency dependencies of wave attenuation in single-crystal quartz: experimental study // J. Geophys. Res. – 2008. – Vol. 113. – P. B11304.

23. Mashinskii E.I. Microplasticity effect in low-velocity zone induced by seismic wave // Journal of Applied Geophysics. – 2012 – Vol. 83. – P. 90–95.

24. Mashinskii E.I. Elastic-microplastic nature of wave propagation in the weakly consolidated rock // Journal of Applied Geophysics. – 2014. – Vol. 101. – P. 11–19.

25. Mashinskii E.I. Dynamic microplasticity manifestation in consolidated sandstone in the acoustical frequency range // Geophysical Prospecting. – 2016. – Vol. 64. – P. 1588–1601.

26. Mavko G.M., Mukerji T., Dvorkin J. Rock Physics Handbook. – Cambridge University press, 1998. – 329 р.

27. Mavko G., Dvorkin J. P-wave attenuation in reservoir and non-reservoir rock // EAGE 67th Conference & Exhibition – Madrid, 2005.

28. Olsson A.K., Austrell P-E. A fitting procedure for viscoelastic-elastoplastic material models // Proceedings of the Second European Conference on Constitutive Models for Rubber, Germany. – 2001.

29. Winkler K.W., Plona T.J. Technique for measuring ultrasonic velocity and attenuation spectra in rocks under pressure // J. Geophys. Res. – 1982. – Vol. 87, B 13. – P. 10776–10780.

30. Winkler K.W. Frequency dependent ultrasonic properties of high-porosity sandstones // J. Geophys. Res. – 1983. – Vol. 88, B 11 – P. 9493–9499.

31. Yin H., G. Zhang, Nanoindentation behavior of muscovite subjected to repeated loading // Journal of Nanomechanics and Micromechanics. – 2011. – Vol. 1 (2). – P. 72–83.

32. Zaitsev V.Yu., Nazarov V.E., Talanov V.I. Experimental Study of the self-action of seismoacoustic waves // Acoustic Physics. – 1999. – Vol. 45 (6). – P. 720–726.

33. Zhou C., Biner S.B., LeSar R. Discrete dislocation dynamics simulations of plasticity at small scales // Acta Materialia. – 2010. – Vol. 58. – P. 1565–1577.


Review

For citations:


Mashinskii E.I. Amplitude-dependent spectra of the damping of a longitudinal wave in dry and water-saturated sandstone at hydrostatic pressure. Russian Journal of Geophysical Technologies. 2018;(1):25-38. (In Russ.) https://doi.org/10.18303/2619-1563-2018-1-3

Views: 1913


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)