Preview

Russian Journal of Geophysical Technologies

Advanced search

PHYSICAL MODELING OF THE ELASTIC WAVES REFLECTION FROM THE BOUNDARY WITH LOW-VELOCITY AZIMUTHALLY ANISOTROPIC MEDIUM

https://doi.org/10.18303/2619-1563-2019-1-60

Abstract

The physical modelling of elastic waves reflected from the boundary between the water and the model of low-velocity azimuthally anisotropic medium was carried out. The model of anisotropic medium was made using 3D printer. The results of experiments showed that the reflection coefficients are practically independent from the azimuth at the angles of incidence less than 25°. At larger angles of incidence, the azimuthal dependence of the reflection coefficients is observed, which is most pronounced at azimuths from 45° to 75°. The results of measurements in the layering direction are in good agreement with the theoretical reflection coefficients for the boundary of isotropic media.

About the Authors

K. V. Fedin
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS; Novosibirsk State University; Novosibirsk State Technical University
Russian Federation
Koptyug Avenue, 3, Novosibirsk, 630090; Pirogova Str., 2, Novosibirsk, 630090; 630073, Novosibirsk, Karl Marx Avenue, 2


Yu. I. Kolesnikov
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS; Seismological Branch of the Federal Research Center of Unified Geophysical Service RAS
Russian Federation
Koptyug Avenue, 3, Novosibirsk, 630090; Koptyug Avenue, 3, Novosibirsk, 630090


R. N. Beysembaev
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS; Novosibirsk State University
Russian Federation
Koptyug Avenue, 3, Novosibirsk, 630090; Pirogova Str., 2, Novosibirsk, 630090


References

1. Аки К., Ричардс П. Количественная сейсмология: Теория и методы. Т. 1. - М.: Мир, 1983. - 520 с.

2. Гик Л.Д., Бобров Б.А. Экспериментальное лабораторное изучение анизотропии тонкослоистых сред // Геология и геофизика. - 1996. - Т. 37, № 5. - С. 97-110.

3. Гольдин С.В. Сейсмические волны в анизотропных средах. - Новосибирск: Издательство СО РАН, 2008.

4. 375 с.

5. Караев Н.А., Лукашин Ю.П., Прокатор О.М., Семенов В.П. Физическое моделирование трещиноватых сред // Технологии сейсморазведки. - 2008. - № 2. - С. 64-73.

6. Колесников Ю.И. Отражение ультразвуковых импульсов от границы воды с неидеально упругими средами: экспериментальные данные для случая наклонного падения // Физическая мезомеханика. - 2005. Т.8, № 1. - С. 91-97.

7. Нефедкина Т.В., Карстен В.В., Егорова А.А. Пространственный анализ амплитуд отраженных продольных волн в азимутально-анизотропных средах // Технологии сейсморазведки. - 2011. - № 3. - С.42-48.

8. Brown R.J., Lawton D.C., Cheadle S.P. Scaled physical modelling of anisotropic wave propagation: multioffset profiles over an orthorhombic medium // Geophysical Journal International. - 1991. - Vol. 107, No. 3. - P. 693¬702.

9. Cerveny V., Ravindra R. Theory of Seismic Head Waves. - Toronto: University of Toronto Press, 1971. - 312 p.

10. Chang C.H., Gardner G.H.F. Effects of vertically aligned subsurface fractures on seismic reflections: A physical model study // Geophysics. - 1997. - Vol. 62, No. 1. - P. 245-252.

11. Chang C.H., Gardner G.H.F., McDonald J.A. A physical model of shear-wave propagation in a transversely isotropic solid // Geophysics. - 1994. - Vol. 59, No. 3. - P. 484-487.

12. Chang C.H., Gardner G.H.F., McDonald J.A. Experimental observation of surface wave propagation for a transversely isotropic medium // Geophysics. - 1995. - Vol. 60, No. 1. - P. 185-190.

13. Chang Y.F., Chang C.H. Laboratory results for the features of body-wave propagation in a transversely isotropic media // Geophysics. - 2001. - Vol. 66, No. 6. - P. 1921-1924.

14. Cheadle S.P., Brown R.J., Lawton D.C. Orthorhombic anisotropy: A physical seismic modeling study // Geophysics. - 1991. - Vol. 56, No. 10. - P. 1603-1613.

15. Ebrom D., Tatham R., Sekharan K., McDonald J., Gardner G. Hyperbolic traveltime analysis of first arrivals in an azimuthally anisotropic medium: a physical modeling study // Geophysics. - 1990a. - Vol. 55, No. 2. - P. 185¬191.

16. Ebrom D.A., Tatham R.H., Sekharan K.K., McDonald J.A., Gardner G.H.F. Dispersion and anisotropy in laminated versus fractured media: An experimental comparison // 60th Annual International Meeting. Society of Exploration Geophysicists. Expanded Abstracts - 1990b. - P. 1416-1419.

17. Hall S.A., Kendall J-M. Fracture characterization at Valhall: Application of P-wave amplitude variation with offset and azimuth (AVOA) analysis to a 3D ocean-bottom data set // Geophysics. - 2003. - Vol. 68, No. 4. - P. 1150¬1160.

18. Huang L., Stewart R., Dyaur N., Baez-Franceschi J. 3D-printed rock models: Elastic properties and the effects of penny-shaped inclusions with fluid substitution // Geophysics. - 2016. - Vol. 81, No. 6. - P. D669-D677.

19. Jenner E. Azimuthal AVO: Methodology and data examples // The Leading Edge. - 2002. - Vol. 21, No. 8. - P. 782-786.

20. Luan X., Di B., Wei J., Zhao J., Li X. Creation of synthetic samples for physical modelling of natural shale // Geophysical Prospecting. - 2016. - Vol. 64, Iss. 4. - P. 898-914.

21. Lynn H.B., Simon K.M., Bates C.R., Van Dok R. Azimuthal anisotropy in P-wave 3-D (multiazimuth) data // The Leading Edge. - 1996. - Vol. 15, No. 8. - P. 923-928.

22. Mah M., Schmitt D.R. Experimental determination of the elastic coefficients of an orthorhombic material // Geophysics. - 2001. - Vol. 66, No. 4. - P. 1217-1225.

23. Mahmoudian F., Margrave G.F., Wong J., Henley D.C. Azimuthal amplitude variation with offset analysis of physical modeling data acquired over an azimuthally anisotropic medium // Geophysics. - 2015. - Vol. 80, No. 1. - P. C21-C35.

24. Malehmir R., Schmitt D.R. Acoustic reflectivity from variously oriented orthorhombic media: analogies to seismic responses from a fractured anisotropic crust // Journal of Geophysical Research - Solid Earth. - 2017. - Vol. 122, Iss. 12. - P. 10069-10085.

25. Mallick S., Craft K.L., Meister L.J., Chambers R.E. Determination of the principal directions of azimuthal anisotropy from P-wave seismic data // Geophysics. - 1998. - Vol. 63, No. 2. - P. 692-706.

26. Melia P.J., Carlson R.L. An experimental test of P-wave anisotropy in stratified media // Geophysics. - 1984. - Vol. 49, No. 4. - P. 374-378.

27. Rüger A. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry // Geophysics. - 1997. - Vol. 62, No. 3. - P. 713-722.

28. Tatham R., Matthews M., Sekharan K., Wade C., Liro L. A physical model study of shear-wave splitting and fracture intensity // Geophysics. - 1992. - Vol. 57, No. 4. - P. 647-652.

29. Young G.B., Braile L.W. A computer program for the application of Zoeppritz's amplitude equations and Knott's energy equations // Bulletin of the Seismological Society of America. - 1976. - Vol. 66, No. 6. - P. 1881-1885.


Review

For citations:


Fedin K.V., Kolesnikov Yu.I., Beysembaev R.N. PHYSICAL MODELING OF THE ELASTIC WAVES REFLECTION FROM THE BOUNDARY WITH LOW-VELOCITY AZIMUTHALLY ANISOTROPIC MEDIUM. Russian Journal of Geophysical Technologies. 2019;1(1):60-71. (In Russ.) https://doi.org/10.18303/2619-1563-2019-1-60

Views: 968


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)