Preview

Russian Journal of Geophysical Technologies

Advanced search

Coefficient inverse problem for the Helmholtz equation

https://doi.org/10.18303/2619-1563-2022-3-77

Abstract

The paper proposed an algorithm for solving the coefficient inverse problem for the Helmholtz equation, which uses the minimization of the functional in the spectral domain. As an example, the parameters of layer on a half-space was found by using of a given function and its derivative on a plain upper boundary in 2D case.

About the Author

E. B. Sibiryakov
http://www.ipgg.sbras.ru/ru/institute/staff/sibiryakoveb
Trofimuk Institute of Petroleum Geology and Geophysics SB RAS
Koptyug Ave., 3, Novosibirsk, 630090

Siberian State University of Telecommunications and Information Science
Gurievskaya Str., 51, Novosibirsk, 630090
Russian Federation


References

1. Anikeev D.V., Kashtan B.M., Blagoveshenskii A.S., Mulder V.A. Exact dynamical method of the inverse seismic problem by integral Gelfand-Levitan equations // Problems of Geophysics. – St. Petersburg University Press, St. Petersburg, 2012. – Vol. 44. – P. 49–81.

2. Kabanikhin S.I. Inverse and Ill-posed Problems. Textbook for Students [in Russian]. – Siberian Scientific Publishing House, Novosibirsk, 2009. – 457 p.

3. Karchevsky A.L. Several remarks on numerical solution of the one-dimensional coefficient inverse problem // Journal of Inverse Ill-Posed Problems. – 2002. – Vol. 10 (4). – P. 361–383, doi: 10.1515/jiip.2002.10.4.361.

4. Karchevsky A.L. A proper flow chart for a numerical solution to an inverse problem by an optimization method // Numerical Analysis and Applications. – 2008. – Vol. 1. – P. 114–122, doi: 10.1134/S1995423908020031.

5. Karchevsky A.L., Fatianov A.G. Numerical solution of the inverse problem for a system of elasticity with the aftereffect for a vertically inhomogeneous medium // Sibirskii Zhurnal Vychislitel’noi Matematiki. – 2001. – Vol. 4 (3). – P. 259–268.

6. Karchevsky A.L., Dedok V.A. Reconstruction of permittivity from the modulus of a scattered electric field // Journal of Applied and Industrial Mathematics. – 2018. – Vol. 12. – P. 470–478, doi: 10.1134/S1990478918030079.

7. Sabitov K.B., Martemyanova N.V. About correctness of inverse problem for the inhomogeneous Helmholtz equation // Vestnik SGTU. Ser. Physical and Mathematical Sciences. – 2018. –Vol. 22 (2). – P. 269–292.

8. Vatulyan A.O., Plotnikov D.K. Inverse coefficient problems in mechanics // PNRPU Mechanics Bulletin. – 2019. – Vol. 3. – P. 37–47.


Review

For citations:


Sibiryakov E.B. Coefficient inverse problem for the Helmholtz equation. Russian Journal of Geophysical Technologies. 2022;(3):77-84. (In Russ.) https://doi.org/10.18303/2619-1563-2022-3-77

Views: 217


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2619-1563 (Online)