Application of seismic facies analysis using attributes to reservoir prediction
https://doi.org/10.18303/2619-1563-2024-3-33
Abstract
Seismic facies analysis is one of the most important stages in the qualitative dynamic interpretation of seismic exploration results. By summarizing considerable experience in the analysis of seismic data and the calculation of various seismic attributes, it allows the identification of geological elements manifesting in the seismic wave field. This makes it possible to determine the detailed geological structure of promising deposits and identify seismic facies based on the similarity of acoustic properties. The article presents the results of testing the seismic facies analysis algorithm on real data using two clustering techniques: by the form of the seismic record and by a set of seismic attributes.
About the Authors
G. M. MitrofanovRussian Federation
Georgy M. Mitrofanov
Koptyug Ave., 3, Novosibirsk, 630090; Pirogova Str., 1, Novosibirsk, 630090; K. Marks Ave., 20, Novosibirsk, 630073
I. A. Kovalenko
Russian Federation
Ilya A. Kovalenko
Koptyug Ave., 3, Novosibirsk, 630090; Pirogova Str., 1, Novosibirsk, 630090
E. I. Korytkin
Russian Federation
Evgeny I. Korytkin
Amurskaya Str., 53, Yuzhno-Sakhalinsk, 693009
References
1. Chopra S., Marfurt K.J. Seismic attributes for prospect identification and reservoir characterization // SEG Geophysical Development Series. 2007. No 11. 465 p.
2. Coates A., Ng A.Y. Learning feature representations with K-means // G. Montavon, G.B. Orr, K.-R. Muller (Eds.), Neural Networks: Tricks of the Trade, 2nd Edition. Springer, Berlin, 2012. P. 561–580. doi:10.1007/978-3-642-35289-8_30.
3. Jain A., Murty M., Flynn P. Data clustering: A review // ACM Computing Surveys. 1999. Vol. 31 (3). P. 264–323. doi:10.1145/331499.33150.
4. Kodinariya T.M., Makwana P.R. Review on determining number of cluster in K-means clustering // International Journal of Advance Research in Computer Science and Management Studies. 2013. Vol. 1 (6). P. 90–95.
5. Lloyd S.P. Least squares quantization in PCM // IEEE Transaction on Information Theory. 1982. Vol. IT-28 (2). P. 129–137.
6. MacQueen J. Some methods for classification and analysis of multivariate observations // Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California, Los Angeles LA USA, 1967. P. 281–297.
7. Mandel I.D. Cluster analysis. Finance and Statistics, Moscow, 1988. 176 p.
8. Mitchum R.M. Jr. Seismic stratigraphy and global changes of sea level, part 11: Glossary of terms used in seismic stratigraphy // C.E. Payton (Ed.) Seismic Stratigraphy–Applications to Hydrocarbon Exploration: AAPG, Memoir 1977. Vol. 26. P. 117–143. doi:10.1306/M26490C13.
9. Olneva T.V. Seismofacies analysis. Images of geological processes and phenomena in seismic images. Institute of computer research, Moscow, Izhevsk, 2017. 157 p.
10. Payton C.E. (Ed.) Seismic Stratigraphy – Applications to Hydrocarbon Exploration. AAPG Memoir. 1977. Vol. 26.
11. Sheriff R.E., Gregory A.P., Vail P.R., Mitchum R.M. Jr. Seismic stratigraphy. Application in oil and gas exploration and prospecting. Part 2. Mir, Moscow, 1982. 467 p.
12. Steinhaus H. Sur la division des corps materiels en parties // Bulletin L’Académie Polonaise des Science.1956. Vol. 4 (12). 1956. P. 801–804.
13. Tyapkin Yu.K., Belfer I.K., Pogozhev V.M., Mushin I.A., Mitrofanov G.M. Evaluation of the Possibilities of Using Instantaneous Dynamic Characteristics of Seismic Records in Oil and Gas Prospecting // Exploration Geophysics, VIEMS Review. Nedra, Moscow, 1986. 76 p.
14. Vail P.R., Gregory A.P., Mitchum R.M. Jr., Sheriff R.E. Seismic stratigraphy. Application in oil and gas prospecting and exploration. Part 1. Mir, Moscow, 1982. 375 p.
Review
For citations:
Mitrofanov G.M., Kovalenko I.A., Korytkin E.I. Application of seismic facies analysis using attributes to reservoir prediction. Russian Journal of Geophysical Technologies. 2024;(3):33-45. (In Russ.) https://doi.org/10.18303/2619-1563-2024-3-33